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ACETYLCHOLINE RECEPTORS IN NICOTINE AND COCAINE CONDITIONED PLACE 
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By Sarah Susan Sanjakdar, Ph.D. 

A Dissertation submitted in partial fulfillment of the requirements for the degree of Ph.D.  at 
Virginia Commonwealth University. 

 

Major Director:  M. Imad Damaj , Ph.D. 
Professor with the Department of Pharmacology and Toxicology 

 
Neuronal nicotinic acetylcholine receptors modulate both cholinergic and non-cholinergic 

synaptic transmission.  Our research concerns α6 and α4 neuronal nicotinic subunits because 
they often co-assemble with the β2 subunit, which has abundant expression in the CNS and 
previous work has demonstrated that β2* nAChRs are involved in nicotine and cocaine reward.  
α6β2* and α4β2* nAChRs are highly expressed in midbrain, which is known to be critical for 
the incentive salience associated with natural and artificial (drug) reward.  Our goal was to assess 
the role of α6β2* and α4β2* nAChRs in nicotine and cocaine reward using an unbiased 
conditioned place preference (CPP) test in mice.  Adult male C57BL/6J mice or male mice null 
for the α6 or α4 nicotinic receptor subunit were used. For CPP: On day 1, pre-conditioning 
scores were recorded; Days 2-4 mice underwent conditioning, where they were randomly 
assigned to either the black or the white compartment paired with drug, and the opposite 
chamber paired with saline; Day 5 was a drug-free test day where post conditioning scores were 
recorded.  α-Conotoxin MII[H9A;L15A], a selective antagonist of α6β2* nAChRs, was given 
centrally either into the lateral ventricle or the nucleus accumbens on conditioning days, which 
tested for acquisition of CPP, or it was given only once into the lateral ventricle on test day 
which tested for expression of CPP. Antagonizing α6*nAChRs resulted in a significant 
attenuation of both nicotine and cocaine place preference.  This was complemented with 
diminished nicotine and cocaine place preference in α6 KO mice compared to WT littermates.  
Studies with α4 KO mice showed significantly reduced nicotine place preference scores 
compared to WT littermates.  In contrast, α4 KO and WT mice showed significant place 
preference for 20mg /kg cocaine, suggesting that the α4 subunit is not required for the reward-
like effects of cocaine in our behavioral test.  Our results implicate α6β2* and α4β2* nAChR 
involvement in nicotine and cocaine CPP, but only α6β2* nAChR involvement in cocaine CPP. 
Lithium conditioned place avoidance and food reward were not altered in α6 KO mice or by α-
Conotoxin MII[H9A;L15A], thereby validating the specificity of hedonics of targeting α6* 
nAChRs in CPP.  Our studies suggest that α6β2* and α4β2*nAChR should be further 
characterized for future nicotine cessation therapies, and α6β2* could provide a new target for 
treating cocaine addiction. 
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CHAPTER ONE 
 

Introduction and Review of the Literature 
 
 

1.1 Nicotine Dependence 

Cigarette smoking is ever-present: there are 1.2 billion smokers on earth, and more 

than 5,500 billion cigarettes are produced a year, accounting for 96% of manufactured 

tobacco product sales globally (World Health Organization, 2004). Tobacco smoking is the 

leading cause of preventable death and disease (CDC, 2009). Over 50% of heavy smokers 

will eventually die of a disease attributed to tobacco use.  In the United States over 

400,000 deaths per year are associated with tobacco use, 40% of which are linked to 

cardiovascular disease.  The decrease in life expectancy is mostly due to tobacco related 

vascular, neoplastic, and respiratory disease. Specifically, lung cancer is highly attributable 

to smoking and is the leading cause of cancer death among men and women. In the United 

States, about 21% of adults currently smoke cigarettes (CDC, 2009).  In a given year, only 

3% of smokers are actually successful in their cessation attempts, even though over 70% of 

smokers express desire to quit (Paolini et al., 2011). 

Nicotine is the naturally occurring alkaloid which is thought to be a primary addictive 

component in tobacco (Castane et al. 2005).  Nicotine alone produces reinforcement, and is 

easily absorbed through skin and mucous membranes (Goodman et al., 2011).  Cigarettes 

produce CNS effects in a matter of seconds when smoked.  Each puff of cigarette provides 

reinforcement, and for heavy smokers, this habit is reinforced hundreds of times daily.   
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Environmental cues, social settings, and the anticipation and physical act of smoking 

all become repeatedly associated with the rewarding effects of nicotine which contribute to 

the resilience of nicotine dependence illustrated by the high relapse rates in smokers who 

try to quit (Goodman et al., 2011).  Several studies have investigated the relevance of 

environmental cues to smoking phenotypes.   One study assessed brain activity in regions 

pertaining to attention, motivation, and reward as participants assigned to a fixed period of 

abstinence viewed a series of pictures of smoking-related cues and paraphernalia and 

reported their level of craving for smoking before, during, and after each session 

(McClernon et al., 2004).  A greater yearning to smoke was correlated with stronger brain 

activity after viewing the smoking-related illustrations.  To the contrary, smokers with 

fewer cravings had stable or decreased brain activity when viewing the same smoking-

related images after a period of abstinence (McClernon et al., 2004).  Additional studies 

have reported that in smokers, smoking-related cues (without nicotine exposure) can 

activate dopaminergic circuitry in the mesolimbic system (Due et al., 2002; Franklin et al., 

2007).  The mesolimbic system is one of the dopaminergic pathways in the brain known to 

be involved in modulating behavioral responses to stimuli that activate feelings of reward 

through the neurotransmitter dopamine.  This pathway is part of the reward circuitry in the 

brain which has been shown to encode attention, expectancy of reward, and incentive 

motivation (Nestler et al, 2005).  

These studies highlight the impact that smoking related cues have on smoking 

addiction, and show that smokers with a greater sensitivity to smoking-related cues may 
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have difficulty in abstaining from cigarette use and are more likely to relapse, in part due 

to the craving triggered by environmental cues.  

1.2 Pharmacological Intervention: Nicotine Cessation Aids 

The current medications approved for treating tobacco dependence include five 

nicotine replacement therapies (NRT): nicotine patch, nicotine gum, nicotine lozenge, 

nicotine inhaler, and nicotine nasal spray.  Two non-nicotine cessation aids have also been 

approved (Hays and Ebbert, 2010). Bupropion sustained release (Zyban®) is an orally 

administered atypical antidepressant and its primary pharmacological action is thought to 

be norepinephrine (NE) and dopamine (DA) reuptake inhibition (Miller et al., 2002).  

Bupropion inhibited nicotine induced overflow from rat striatal slices preloaded with DA 

and overflow from rat hippocampal slices preloaded with NE (Miller et al., 2002). 

Buproprion is also a non-competitive antagonist for α3β2, α4β2, and α7 nAChRs (Fryer 

and Lukas, 1999; Slemmer et al., 2000).  Varenicline (Chantix®) is an orally administered 

α4β2 nAChR partial agonist, an α3β4 nAChR agonist, a weak partial agonist at α3β2 and 

α6* nAChRs, and a full agonist at α7 nAChRs (Mihalak et al, 2006) that has produced 

slightly higher rates of successful smoking abstinence compared to other  therapies.  In one 

current clinical assessment, varenicline produced abstinence rates of 36.7% versus only 

7.9% for placebo one year after quitting smoking (Williams et al., 2007).   

All medications approved for treating tobacco dependence have undergone rigorous 

testing for effectiveness and safety, but limitations still exist.  The primary limitation of 

available medications is their overall low efficacy of successfully treating nicotine 

dependence, and the undesirable side effects that ensue with use.  Despite the availability 
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of several nicotine cessation aids, there remains an initial failure of smoking addicts to 

achieve abstinence and a high relapse rate among those who do initially achieve smoking 

abstinence.  Estimated abstinence rates six months post-quitting range between 20-30% for 

all available therapies (Hays et al.,2011).   Population-based studies show that adverse side 

effects associated with nicotine cessation aids are common.  The main systemic adverse 

effects for NRT reported include sleep disturbance (insomnia and abnormal dreams), 

headache, nausea and/or vomiting, dizziness, gastrointestinal symptoms (dyspepsia, 

diarrhea, constipation), and cardiac palpitations (Hays et al., 2011).  These effects could be 

explained in part, by the fact that nicotine is not a selective agonist at nicotinic receptors; 

many of the peripheral adverse effects of nicotine could be due to stimulating α3β4* 

nAChRs, which are prevalent in the periphery (* denotes the presence of other nicotinic 

subunits in the receptor subtype).  The issue of receptor selectivity of the current available 

pharmacotherapies is another limitation to consider.  

   For buproprion, adverse effects that were reported included seizures, suicidal 

ideation, and several cardiovascular episodes (Hays and Ebbert, 2010).  The occurrence of 

these adverse events was about 14 days after initiation of buproprion use, which indicates 

that doctors should be monitoring patients at the start of the treatment to help prevent these 

serious adverse effects from occurring or becoming fatal.   

For varenicline, other than the reports of cardiovascular episodes (Singh et al., 

2011) and gastrointestinal disturbances (Leung et al., 2011), there have also been several 

accounts of adverse neuropsychiatric effects.  Data provided by the FDA indicates that by 

the end of year 2007, a total of 147 cases of suicidal thought or behavior were reported in 
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association with varenicline use. Warnings have been added to the prescribing information 

for both buproprion and varenicline because of the neuropsychiatric symptoms (FDA, 

2009). 

Considering the drawbacks and low efficacies of current pharmacotherapies, there is 

much progress to be made. Identification of the relevant nicotinic receptor subtypes 

involved in nicotine dependence is important for the discovery of new treatments.  

Therefore, developing and further refining the current therapies requires a better 

understanding of the physiology and the role of nicotinic subunits that co-express with the 

β2 subunit, which has been heavily studied and is known to be crucial to nicotine reward 

and reinforcement (Corrigall et al., 1994; Maskos et al., 2005; Picciotto et al, 1998; Pons et 

al., 2008; Walters et al., 2006).    

1.3  Nicotinic Receptors: Composition, Distribution, and Subtypes 

Nicotinic acetylcholine receptors (nAChRs) are members of the ligand gated ion 

channel family, which also include glycine, GABAA, and 5-HT3 receptors.  As their name 

indicates, nAChRs are stimulated by the endogenous acetylcholine neurotransmitter  

(ACh) or by exogenous nicotine (Goodman et al., 2011).  Once nicotine binds, the receptor 

undergoes activation and desensitization at a rate that is dictated by the nicotinic subunits 

that make up the receptor.  Activation and desensitization correspond to transitions 

between distinct structural states (open and closed channel state and positions in between).  

Nicotinic ligands influence the changes in the structural state of the receptor by stabilizing 

the position that they bind with high affinity (Champtiaux and Changeux, 2004).  nAChRs 

mediate postsynaptic neurotransmission at neuromuscular junctions and in peripheral 
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ganglia.  In the CNS, nAChRs mediate presynpatic neurotransmitter release, and they are 

located both pre- and post-synpatically (Goodman et al., 2011).   

Historically, the electrical organs from the Torpedo californica, a species of electric 

ray, and Electrophorus electricus, a species of electric fish, have provided researchers a 

way to study nicotinic receptors due to the high levels of nicotinic receptors on the very 

excitable surface of the electric orgran’s membrane.  The nicotinic receptor was purified 

from these aquatic species and this ultimately led to the isolation of cDNAs for nicotinic 

receptor subunits, which provided a means for cloning the genes of these subunits from 

mammalian neurons (Numa et al., 1983), allowing for the expression of different subunit 

combinations in cellular systems where their functionality was assessed (Changeux, 2005; 

Karlin et al., 2002).  

Nicotinic receptors exist as pentameric structures composed of either five alpha 

subunits (homomeric receptors) or a combination of alpha and beta subunits (heteromeric 

receptors).  Of the sixteen genes identified that encode nAChR subunits, nine are expressed 

in the CNS.  Identified subunits include α7 homopentamers, and α2- α4, α6, and β2 and β4 

subunits which co-assemble into heteropentamers (Changeux and Edelstein, 1998 and 

2005).  β3 and α5 subunits lack the amino acids that are required to form the ligand 

binding site, and are therefore considered structural accessory subunits (Ramirez-latorre et 

al., 1996; Groot-kormelink et al., 1998).   Several functional subunit combinations have 

been identified, and not all alpha and beta subunit combinations result in a functional 

receptor.  The assortment of subunit arrangement is vast and currently exceeds the ability 

of pharmacological agents to selectively distinguish between receptor subtypes.    
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As for nicotinic receptor distribution, different receptor subtypes confer different 

patterns of expression: High levels of α4β2* nAChRs are ubiquitously expressed through 

out the brain (Changeux and Edelstein, 1998) whereas high levels of α3β4* and α3β2* 

nAChRs are found in the peripheral ganglia (Ke et al., 1998).  Previous work has 

established that β2* nAChRs are critical for nicotine induced DA release, and nicotine 

reward and reinforcement  (Corrigall et al., 1994; Maskos et al., 2005; Picciotto et al, 

1998; Pons et al., 2008; Walters et al., 2006).  In the CNS, α3β4* nAChRs are located 

mainly in the medial habenula (MHb) and the interpeduncular nucleus (IPN), and are also 

found in lower levels in the pineal gland, adrenal medulla, dorsal medulla, hippocampus, 

and retina (Grady et al., 2009).  Interestingly, data in human genetic studies implicate the 

CHRNA5/A3/B4 gene cluster in nicotine dependence (Beirut et al., 2007; Chen et al., 

2009).  This gene cluster codes for α5, α3, and β4 nicotinic receptor subunits.  These 

receptor subtypes have high expression levels in periphery, in autonomic ganglia and also 

in the adrenal and dorsal medulla (Flores et al., 1996) therefore targeting this receptor 

subtype would likely produce unwanted side effects, similar to the side effects that are 

faced with the current nicotine cessation aids.  Research has shown increased nicotine 

intake in mice null for the α5 subunit, and re-expressing the subunit in the medial habenula 

rescued this effect (Fowler et al., 2011).  Also while lower doses nicotine place preference 

scores do not differ between α5 KO or WT mice, α5 KO mice will maintain a significant 

place preference for higher doses of nicotine that is not observed in WT mice (Jackson et 

al., 2010).  These results suggest an enhancement of reward in the absence of the α5 

subunit.    
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α7* nicotinic receptors, usually expressed in a homomeric form,  are also located 

through out the brain, where they are found in brain regions involved in cognitive function, 

including the hippocampus, and layers I and VI of cortex (Clarke et al., 1985; Gotti et al., 

2006; Wonnacott, 1986).  They are also found in the ventral tegmentum, substantia nigra, 

and in some subcortical limbic regions.  Brunzell and McIntosh (2012) showed that 

infusion of an α7 selective nAChR antagonist into the Acb shell and the anterior cingulate 

cortex resulted in increased motivation of rats to self-administer nicotine, whereas infusing 

an α7 selective agonist into the Acb shell resulted in a decrease of motivation to self-

administer nicotine, implicating a role for α7 in nicotine reinforcement (Brunzell and 

McIntosh, 2012).  Jackson et al. (2008) showed that α7 KO mice displayed reduced 

somatic signs of withdrawal, implicating a role of α7 in the physical signs of nicotine 

withdrawal. 

   Some nicotinic subtypes have a more conservative expression pattern in the CNS, 

such as α6β2* nAChRs which are predominantly expressed on catecholaminergic nuclei in 

midbrain, along with some expression in retinal regions (superior colliculus and lateral 

geniculate nucleus) (Champtiaux et al., 2003; Champtiaux et al., 2002; Grady et al.,2003; 

Klink et al.2001; Salminen et al., 2007).  The midbrain harbors the VTA which is part of 

the mesolimbic pathway, which is one of the dopaminergic pathways in the brain known to 

be involved in mediating behavioral motivational responses to stimuli that generate 

internal state of reward through dopaminergic neurotransmission (Koob et al., 2010).  DA 

neurons begin in the VTA and project to the NAc and other areas including the OT, CP, 

PFC, and AMG.  Drugs of abuse including nicotine and cocaine will result in increased 
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DA release in the ventral striatum (particularly the Acb) (Barrett et al., 2004; Stein et al., 

1998).  Nicotinic receptor subtypes that are located on terminals and are known to regulate 

nicotine stimulated DA release include: α4α6β2β3, α6β2β3, α6β2 α4β2, and α4α5β2 

(Grady et al., 2007; Klink et al., 2001).  The mesolimbic system is crucial for signaling the 

incentive salience of psychoactive drugs, and the effects that drugs have in these brain 

regions contribute to the behavioral phenotype underlying drug addiction (Koob, 2010).   

1.4. Pharmacological and Genetic Approaches that Distinguish β2* nAChR Subtypes 

In order to characterize discrete nicotinic receptor subtypes, an array of 

pharmacological and genetic approaches have been discovered and developed.  Some of 

the earliest studies involved the discovery of α-toxins from venom of krait and cobra 

snakes, which have high affinities and low dissociation rates from the target receptor and 

act as high affinity antagonists.  These toxins have historical value, as they were used to 

assay the first isolated cholinergic receptor in vitro (Changeux, 2005).  

Many other toxins have evolved in marine vertebrate animals which enhance 

predation or protection from predation (Taylor et al., 2007).  The marine animal of the 

genus Conus has provided a rich supply of biologically active pharmacological tools from 

their venom that target different voltage gated or ion gated channels (McIntosh et al., 

1999).  Recently, the nicotinic field has observed the discovery and characterization of 

many different α-conotoxins which are small disulfide rich peptides that are derived from 

the genus Conus and target specific nAChR subtypes with high selectivity (Azam and 

McIntosh, 2009; McIntosh et al.,1999) .  One of the most important and exciting feature of 
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α-conotoxins, is their ability to discriminate between closely related members of nicotinic 

receptor subtypes, which has been extremely useful for further characterizing the 

distribution and pharmacological significance of these different receptor subtypes (Azam 

and McIntosh, 2009).  These conotoxin peptides distinguished between different β2* 

nAChR subtypes, specifically it allowed for the discrimination between α4β2(α5) nAChRs 

and α3α6β2* nAChRs. 

In 2004, α-conotoxin MII [H9A; L15A] was developed in Dr. Michael McIntosh’s 

Lab at the University of Utah (McIntosh et al., 2004).  This conotoxin is a mutant analog 

of the original α-conotoxin MII, isolated from venom of cone snail in 1997, which was a 

16 amino acid peptide with high affinity for α3β2 and α6β2* nicotinic receptors (Kulak et 

al., 1997).  Since α-conotoxin MII could not differentiate between these two subtypes 

(Kuryatov et al., 2000), a series of α-conotoxin MII analogs with a higher selectivity for 

α6β2* nAChRs were developed, including α-conotoxin MII[H9A;L15A] (McIntosh et al., 

2004).  This was useful for selectively targeting the α6 subunit in brain regions that 

contained both α3 *and α6* nAChR subtypes. 

α-Conotoxin MII[H9A;L15A] differs from the original α-conotoxin MII peptide 

sequence in the substitution of Histidine at position 9, and Leucine at position 15 for 

Alanine, hence the [H9A;L15A] in the naming of the compound.  One of the main effects 

of these amino acid substitutions is significantly increasing the affinity for α6/α3β2β3, 

where the IC50 is approximately 2000-fold lower for α6/α3β2β3 versus α3β2 (refer to 

Table 1 for IC50 of α-conotoxin MII[H9A;L15A] at α3β2 vs. α6/α3β2β3 nAChRs) 
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(McIntosh et al., 2004).  Another notable effect of the Alanine substitution in the peptide 

sequence is rapid binding kinetics and a more rapid recovery of the receptor from 

blockade.   MII[H9A;L15A] has 100 fold lower activity at α6/α3β4* receptors, and has 

little to no activity on α2β2, α2β4, α3β4, α4β2, α4β4, and α7 (McIntosh et al., 2004). 

Overall, α-conotoxin MII[H9A;L15A] selectively blocks α6* nAChRs, with preference for 

the α6/α3β2β3 versus α6/α3β4 subunit combination. 
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Table 1. IC50 of α-Conotoxin MII[H9A;L15A] at α3β2 vs. α6/α3β2β3 nAChRs. 

 

 

                                                                            (adapted from McIntosh et al., 2004) 
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  The use of genetically engineered knock out (KO) and knock in (KI) mice provide 

another means of understanding nicotinic receptors.  Genetically engineered mice provide 

a distinct way of exploring the subunit composition of native nicotinic receptors, and they 

allow scientists to re-asses and expand on results obtained from pharmacological studies.  

Furthermore, genetically engineered mice also permit scientists to explore nicotinic 

subunits for which there are no selective ligands available (such as the α4 subunit).  

Currently, KO mice lacking the nAChR subunits α2, α3, α4, α5, α6, α7, α9, β2, β3, and β4 

have been generated (Champtiaux and Changeux, 2004) and have provided us with a better 

understanding of the contribution of specific nicotinic subunits to various aspects of 

nicotinic cholinergic transmission in vivo.  KI mice provide a means to address the issue of 

sufficiency of a nicotinic subunit of interest, which differs from the KO approach which 

addresses the issue of necessity. KI mice involve the introduction of point mutations into a 

gene in order to generate mice expressing mutant forms of the nicotinic subunit of interest.  

Currently mice with mutant gain-of-function forms of α4, α6, and α7 have been generated 

(Tapper et al., 2004; Drenan et al., 2008; Orr-Urtreger et al., 2000). Studies with KI mice 

allow us to explore the relationships between the structural characteristics of nicotinic 

receptors and their function in vivo.   

 Mice null for the α6 nicotinic subunit were generated in 2002 in Jean-Pierre 

Changeux’s lab at Institute Pasteur, in France (Champtiaux et al., 2002).  Transcription of 

the α6 gene was impaired by deletion of the first two exons of the gene.  One of the issues 

that arise with the generation of KO mice is the possibility of developmental abnormalities.  

Therefore, it was essential to assess the viability of these mice.  Null mutant mice for the 
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α6 subunit, as measured by a lack of α-Conotoxin MII binding, did not show any 

significant neurological or behavioral defects, were capable of breeding, and had normal 

body weight and brain size compared to wild type (WT) littermates (Champtiaux et al., 

2002).  Also, there were no developmental abnormalities in these mice, specifically when 

examining the visual and dopaminergic pathways, where the highest levels of α6 are 

expressed.  Film autoradiography displayed no differences in the abundance of mRNA of 

α3, α4, α5, α7, β2, or β4 nAChR subunits, suggesting a lack of upregulation of other 

nicotinic subunits to compensate for the lack of the α6 subunit.  These mice exhibited 

normal behavior in home cages, and had normal locomotor activity in both non-habituated 

and habituated settings (Champtiaux et al., 2002). 

 The binding profile of native nAChRs in α6 KO mice was characterized using 

several nicotinic ligands.  Receptor autoradiography showed a decrease in nicotine, 

epibatidine, and cytisine binding, and a complete lack of α-conotoxin MII binding, at the 

superior colliculus (SC), the dorsal lateral geniculate nucleus (dLGN), and the midbrain 

regions of homozygous null mutant mice (Champtiaux et al., 2002).  Intriguingly, 

displacement of epibatidine binding by α-conotoxin MII in the striatum showed an increase 

in α-conotoxin MII resistant areas in KO mice compared to WT mice (possibly α4β2* 

nAChRs), where there was no difference in the total binding, which suggests the 

possibility of developmental compensation (Champtiaux et al., 2002).  

Mice null for the α4 nicotinic subunit were independently generated in 1999 in Dr. 

Jean- Pierre Changeux’s lab at Institut Pasteur, in France (Marubio et al., 1999), and also 

in 2000, in Dr. John Drago’s Lab at Monash University, in Australia (Ross et al., 2000).  
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The mice were evaluated for size and weight, fecundity, and overall behavior.  α4 KO mice 

had a normal anatomy, were capable of reproduction, and portrayed normal locomotor 

behavior in their home cages.   

The binding profile of native nAChRs in α4 KO mice was characterized using 

several nicotinic ligands.  Receptor autoradiography showed a decrease in nicotine and 

epibatidine binding in most brain regions of α4 KO mice.  However, epibatidine binding 

persisted in the medial habenula (MHb), superior colliculus (SC), and the interpeduncular 

nucleus (IPN), and some low levels in the substantia nigra (SN).  Other studies have shown 

that α3β4* or α6β2* nAChR subtypes reside in these brain regions (Whiteaker et al., 

2000). 

Interestingly, the locomotor behavior of the Australian α4 KO mice in a novel 

environment revealed an increase of exploratory behavior compared to WT littermates 

(Ross et al., 2000).  In addition, when assessing anxiety in these mice using the elevated 

plus maze test, α4 KO mice showed higher levels of basal anxiety compared to WT 

littermates, suggesting that the α4 subunit is mediates anxiety in mice.  In contrast, this 

phenotype was not present in the α4 KO mice generated in France (Marubio et al., 1999; 

Marubio et al., 2003).  This discrepancy could be due to a multitude of factors possibly 

pertaining to the differences in the methods and the background strains of mice used to 

generate these transgenic mice.  The α4 KO mice generated in Australia, were derived 

from chimeras generated from BALB/C blastocytes, which were then mated with CF1 

mice to create a heterozygous mouse (Ross et al., 2000). This heterozygous mouse was 

then crossed with C57BL/6J (B6) mice to generate the colony, and contains a total of four 
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different background strains of mice.  This differs from the creation of the French α4 KO 

mice, which were derived from the 129 mouse strain mated with B6 mice.  Interestingly, 

the anxiety responses in BALB/C, B6 and CD-1 mice exposed to a novel open space test 

were assessed in a study which found that of the three strains, the BALB/C mice displayed 

the most anxiety-like phenotype (Michalikova et al., 2010), which could be one possible 

explanation for the basal anxiety observed in the Australian α4 KO line. 

In light of the knock-out study in mice suggesting a role of α4 in anxiety (Ross et 

al., 2000), one group conducted a genetic association study and found that the CHRNA4 

rs1044396 polymorphism was associated with negative emotionality, where Caucasian 

subjects described themselves as being more anxious and emotionally unstable (using 

psychometric personality questionnares) (Markett et al., 2011).  Recently, another study 

reported cognitive phenotype of CHRNA4 rs1044396 SNP, characterized by T allele 

carriers inclination to preferentially process events in the attentional focus compared to 

events occurring outside the focus of attention (Greenwood et al., 2012).  These genetic 

association studies help to bridge the gap between animal and human research; data 

pertaining to α4 suggest that this nicotinic subtype is involved in anxiety and cognition.  

In summary, transgenic mice have proven to be a useful experimental approach to 

the study of nicotine dependence, capable of revealing phenotypic differences in various 

behavioral models of nicotine dependence. The most common criticism is that 

compensatory effects of other genes in transgenic mice may either mask the detection of 

the targeted gene’s phenotype (epistasis), or be confused for the phenotype of the null 

gene.  Another issue to be aware of is the ‘hitch-hiking donor gene’ confound.  Even after 
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12 generations of crossing with the B6 mouse strain about 1% of the mouse’s genome still 

remains from the strain that was originally used to derive the mouse (usually a 129 mouse 

strain) which could result in phenotypic differences.  For these reasons, conducting 

research using both pharmacological and genetic manipulations is valuable.    

1.5 Animal Behavioral Models of Reward: Understanding the Conditioned Place 

Preference Test 

           Humans consume psychoactive substances, in part, because they provide 

‘rewarding’ and ‘pleasurable’ incentives.  Drug reward entails a multifaceted interrelation 

of the physiological effects of drugs in the CNS associated with motivation and feeling, 

along with a learned association of drug-related environmental cues (Hyman et al., 2005).   

Generally, reward can be defined as the hypothetical internal state of pleasure or 

gratification (hedonia), which is achieved through the possession or utilization of 

appetitive stimuli (Sanchis-Segura et al., 2006).  In the psychobiology of substance 

dependence, reward describes the gratifying or enjoyable effects of a drug (Sanchis-Segura 

et al., 2006).  In this regard, reward refers to a subjective response related to the post-

presentational effects of the appetitive stimuli, which later on become important features of 

the internalization of these incentives.  

While there are a myriad of rewarding psychoactive substances with dissimilar 

mechanisms of action in the CNS, almost all of them will directly or indirectly activate the 

mesolimbic DA system (Di Chiara et al., 2004; Koob et al., 2010).  The mesolimbic DA 

system normally reinforces behaviors that are vital to survival, including eating and sexual 

reproduction (Koob et al., 2010).  Compared to natural reinforcers, drugs of abuse have 
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significantly greater effects on DA release in brain regions within the mesolimbic pathway, 

such as the Acb.  One study showed that food increased DA levels in the Acb by 45%, 

while the psychostimulants, amphetamine and cocaine, increased DA levels by 500% 

(Hernandez and Hoebel, 1988).  When the rewarding drug is consumed, DA is released in 

the CNS, which leads to the growth of synaptic connections in the neural pathways that 

involve the behavior correlated with or leading up to the reward.  

Several animal models have been developed with the aim to objectively assess drug 

reward and reinforcement.  Fundamental principles of learning and behavior have been 

assessed for many years, and made relevant in the study of drug reward and reinforcement.  

This is appropriate given that the development of drug dependence can be considered a 

learned trait, in the sense that internalization of the rewarding of effects of drugs and the 

association made with the environment related to the drug following repeated exposure, 

will result in changes in behavior (Bardo and Bevins, 2000).    

 One of many animal models developed to assess the reward like effects of drugs is 

the conditioned place preference (CPP) test.  CPP is a well established test of drug induced 

conditioning that involves contextual cues which is an important aspect of learning and 

memory that underlies addiction, and have been proposed as useful at inferring the hedonic 

value (‘rewarding properties’) of a drug.  CPP reflects a preference for a context due to the 

continuous association between the context and the stimulus, and there has been a 

persistent increase of publications that use this procedure (Tzschentke, 2008).   In a place 

conditioning test, the drug of interest is administered by the experimenter to the subject 

(mouse), and the drug’s effects, acting as the unconditioned stimulus (US), and a neutral 
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environment (acting as the neutral stimulus) are repeatedly paired.  After repeated pairings, 

the previously neutral stimulus obtains the means to act as a conditioned stimulus (CS), 

and this is thought to be a Pavlovian type of learning (Cunningham, 1998).   The CS will 

now be able to bring about approach or avoidance phenotype depending on the effect of 

the drug (US) (Bardo and Bevins, 2000).  By using place conditioning to measure the 

approach or avoidance behavior, experimenters can gain more knowledge of the drug’s 

effects and its properties in an organism. Indeed, CPP is useful in depicting how drugs of 

abuse abnormally strengthen stimulus drug associations, which results in excessive value 

to the context or environment predictive of drug availability.   

Although humans will portray some conditioned approach or avoidance behavior to 

certain stimuli associated with drug use, CPP is not principally meant to mimic human 

behavior.  It is important to recognize that the dose and route of administration of drug is 

given to the subject by the experimenter, independent of the subject’s choice and will, 

which therefore separates it from human situations where drug is willingly and 

independently consumed.  In this regard, CPP should be classified as a ‘test’ because it 

does not ‘model’ an aspect of human behavior and lacks discernible face validity.  Rather, 

it is thought that CPP provides more insight to the characteristics of the drug than the 

subject’s behavior (Sanchis-Segura et al., 2006). 

Interpretation of place conditioning results has been a topic of debate in the 

scientific community, and the various interpretations of CPP can be attributed in part to the 

various ways the test is conducted.  CPP is thought to be useful for deducing the internal 

state of reward or hedonic value of a drug, and has also been suggested as useful for 
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measuring drug-seeking behavior (Bardo and Bevins, 2000; Sanchis-Segura et al., 2006).  

Another interpretation suggests that CPP measures the ‘conditioned approach’ of the 

individual subject (Mead et al., 2005).  Although interpretation of CPP can be sometimes 

intangible, it remains a well established test of drug induced conditioning that heavily 

involves contextual cues, which involves synaptic transmission similar to that which 

underlies learning and memory in addiction.  As discussed throughout this dissertation, 

several studies have investigated the impact of environmental cues on drug use and drug 

craving phenotypes, and cues have been shown to play an important role in addiction and 

relapse (Ehrman et al., 1992; McClernon et al., 2004; Reid et al., 1999).   

When a substance is administered in conjunction with the psychoactive drug during 

the pairing sessions of US to CS, and disrupts the ability of the psychoactive drug to 

induce CPP, it is interpreted as preventing the acquisition of the reward-like properties of 

the psychoactive drug.  The antagonist is most likely acting by blocking the reward-like 

effect of the drug in the CNS during the conditioning sessions, thereby preventing the 

effect that results in the association of the drug to the context; animals do not feel 

motivated or have reason to find the context desirable or preferable at the end of the CPP 

procedure, therefore no CPP is observed.   Alternatively, when a substance is administered 

only on test day of CPP after the completion of the conditioning pairing sessions of the US 

to the CS, and successfully disrupts drug induced place preference, it is identified as 

blocking the expression of CPP.  In this manner, the substance was able to stop place 

preference from being expressed after the animal had undergone conditioning with the 

drug.  The substance could be acting by blocking DA release that occurs when the animal 
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is in contact with the environment or context associated with the psychoactive drug, 

thereby reducing the motivational or preferable attributes of the context. 

Some issues must be addressed in order to correctly interpret CPP results.  One 

issue is to assess the specificity of hedonics of the substance being tested or the nicotinic 

subunit being targeted via genetic manipulations; does the substance or genetic 

manipulation cause an overall state of anhedonia? Does it impair all forms of memory or 

cause general confusion in the animal?  It is important to examine the effect of 

experimental manipulations on the overall associative process (memory recollection), and 

to also evaluate possible locomotor effects, when a substance is administered to the 

animals on days when preference scores are being collected. 

Considering that CPP is a sensitive test, it is rudimentary to realize that the 

parameters of the procedure will significantly affect the outcome of experimental results.   

The room where CPP is conducted must be maintained at a stable room temperature of 68-

72°F, have dim lighting, and a fan should provide ambient noise to drown out any 

extraneous noise occurring outside the room. On the whole, more apparent preference is 

realized when the drug (US) is given just before exposure to the neutral context or 

environment.  In fact, studies have shown that exposing the drug (US) after exposure to a 

neutral context will result in conditioned place avoidance (CPA) instead of CPP (Font et 

al., 2006; Fudala et al., 1990).  This could be due to the  negative effects of the drug at the 

end of the pharmacokinetic curve, or the withdrawal or negative effects that ensue after the 

reward like effects of the drug have passed.  Also, in general with more pairing sessions of 

US to CS, more robust and persistent conditioned preference can be achieved.  Another 
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important factor is handling the mice prior to the initiation of the CPP procedure, as our lab 

has published on habituation to the handling techniques influencing the results of nicotine 

CPP (Grabus et al., 2006).  These are some of the parameters to consider, especially when 

working with drugs such as ethanol, nicotine, or cannabinoids that produce place 

preference scores in animals that are not as robust compared to preference scores for 

opiates and psychostimulants (Cunningham et al., 1993; Tzschentke, 2007).  The route of 

administration of a drug, the species, and the genetic background of the animals are also 

important aspects to consider when conducting CPP. 

Many groups have observed that nicotine induced place preference in rodents 

(Berrendero et al., 2002; Brunzell et al., 2009; Calcagnetti and Schechter, 1994; Castañé et 

al., 2002; Fudala et al., 1985; Grabus et al., 2006; McGranahan et al., 2010; Walters et al., 

2006), while other groups have reported that nicotine only causes a place aversion (Jorenby 

et al., 1990) or has no effect on place preference (Belluzzi et al., 2005; Clarke et al., 1987).  

Several parameters (addressed in the paragraph above) including species used and the 

different protocols for conditioning in different laboratories could account for the 

discrepancies in the results of these studies.  Figure A illustrates a typical dose effect curve 

for nicotine CPP using our protocol, which gives results that can be replicated in our lab.  

Notice the inverted U shape of the nicotine place preference scores, where the effective 

dose range for inducing place preference for nicotine appears to be relatively narrow.  The 

subcutaneous dose of 0.5 mg/kg nicotine repeatedly produces the most robust preference 

scores in adult male C57BL/6J mice in our lab (p=0.0006; F=6.532). 
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Figure A 
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Figure A. Nicotine Dose Effect Curve for CPP. 

Adult male B6 mice display significant place preference for nicotine at doses between 
0.25, 0.5, and 0.75 mg/kg (s.c.).  The group that received 0.5 mg/kg nicotine had 
significantly greater preference scores than both saline and 1mg/kg nicotine groups (*** = 
p<0.001 compared to saline; * = p<0.05 compared to saline; # = p < 0.05 compared to 0.5 
mg/kg nicotine).

n 6-12 

P value 0.0006 

F (4, 35) 6.532 

R squared 0.4573 
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1.6 The Role of α6 Containing nAChRs in Nicotine Reward and Reinforcement. 
  

In 1986, DeNoble and Mele discovered that rats could be trained to self-administer 

nicotine, and that this reinforcement was blocked by mecamylamine, but not 

hexamethonium, implicating a role for the neuronal nicotinic receptors in nicotine reward 

and reinforcement (DeNoble and Mele, 2006).  Since then, studies have established that 

β2* nAChRs are critical for nicotine induced DA release, and nicotine reward and 

reinforcement  (Corrigall et al., 1994; Maskos et al., 2005; Picciotto et al, 1998; Pons et al., 

2008; Walters et al., 2006).  Of the various nicotinic subunits that co-assemble with β2, α6 

is of particular interest.  α6β2* nAChRs are predominantly expressed on catecholaminergic 

nuclei in midbrain, where they are located pre-synaptically in the NAc (ventral striatum) 

and post-synaptically in the VTA.  They are also located in the caudate-putamen (dorsal 

striatum), substantia nigra, locus coeruleus, and the superior colliculus and lateral 

geniculate nucleus (two retinal regions) (Champtiaux et al., 2002; Klink et al., 2001) 

(Whiteaker et al., 2000).  The high expression of α6β2* nAChRs within dopaminergic 

circuitry renders this subtype an attractive target for probing nicotine reward.  

Several studies have demonstrated a critical role of α6* nAChR involvement in 

nicotine induced DA release, reward, and reinforcement.  About thirty percent of nicotine-

stimulated DA release in striatum is mediated by α6β2* nicotinic receptors (Grady et al., 

2002).  Furthermore, using fast-scan cyclic voltammetry, DA neurotransmission stimulated 

by nicotine was observed to be distinctively governed by α6β2* nAChRs in the Acb (Exley 

et al., 2008).  Brunzell et al. (2010) has also shown that antagonism of α6β2* nAChRs in 

the NAc shell significantly reduces motivation to self administer nicotine, and Gotti et al. 
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(2010) showed that α6β2* nAChRs in the VTA mediate nicotine’s effects on DA release, 

locomotion, and reinforcement.  

Pons et al. (2008) showed that α6 KO mice (and α4 or β2 KO mice) displayed decreased 

self-administration of nicotine compared to WT counterparts, and nicotine self-

administration was restored by re-expression of α6 (or α4 or β2) in the VTA.  Additionally, 

Drenan and colleagues (2008) showed that α6 gain-of-function mutant mice were 

hyperactive compared to WT littermates, and had augmented nicotine-stimulated DA 

release from presynaptic terminals.  Our lab has shown that injecting a selective 

α6*nAChR antagonist, α-Conotoxin MII [H9A;L15A], into the lateral ventricle resulted in 

a decreased expression of nicotine place preference in mice (Jackson et al., 2009).  This 

study from our lab has showed that α-conotoxin MII [H9A; L15A], a selective α6β2* 

nAChR antagonist, did not affect the analgesia, locomotion, or body temperature changes 

after acute exposure to nicotine. α-Conotoxin MII [H9A; L15A] blocked conditioned place 

aversion and anxiety related behavior associated with affective nicotine withdrawal signs 

but had no effect on somatic signs or on hyperalgesia, which comprise the physical signs 

of nicotine withdrawal (Jackson et al., 2008).  

Of nicotinic subtypes located on dopaminergic terminals that include α6, some are 

made up of α6β2β3* subunits and others comprise α4α6β2β3* subunits (Zoli et al., 2012).  

These different receptor subtypes have different binding properties and therefore different 

sensitivities to nicotine, with α4α6β2β3* nAChRs exhibiting the greatest sensitivity to 

nicotine (EC50 = 230 nM), with high affinity for nicotine and ACh binding and a slower 

desensitization profile (Grady et al., 2012; Salminen et al., 2007).  Drenan et al. (2010) 



www.manaraa.com

 

26 

showed that gain of function α6 KI mice, which typically displayed hyperactivity and 

displayed enhanced nicotine stimulated DA release in synaptosomal preparations, had 

normal behavior and had fewer and less sensitive α6* nicotinic receptors, and a decrease in 

DA release when the α4 subunit was removed.  This implicates a vital role for α4α6β2* 

nAChRs in the behaviors of the α6 gain of function KI mice and in the cholinergic control 

of DA neurotransmission (Drenan et al., 2010).    

 Another set of studies conducted by Exley et al. (2008; 2011) focused on the 

examining the contributions of α6* and α4* nicotinic receptors in nicotine stimulated DA 

neurotransmission and nicotine reinforcement.  This lab found using cyclic volatemmetry, 

that the majority of nicotine stimulated DA release in the Acb was mediated by α6β2* 

nAChRs (Exley et al., 2008).  In addition, using an intracranial self administration (ICSA) 

model they observed that α6 KO mice readily self administered nicotine (ICSA) into the 

VTA similar to WT at a dose of 100ng but for lower dose of 10 ng they self administered 

to a lesser extent than WT.  α4 KO mice transiently self administered nicotine in early 

training sessions (the first 3 sessions) but all following sessions did not result in self-

administration of nicotine into the VTA compared to WT mice (Exley et al., 2011).  Exley 

et al. (2011) were also interested in the effect of nicotine on dopaminergic neuronal 

activity in VTA, knowing that nicotine modifies DA neuron excitability (VTA) and also 

modulates DA release (terminals in striatum).  Systemic administration of 30ug/kg nicotine 

resulted in increased firing rate of DA neurons in the VTA in both α6 KO and WT mice 

(Exley et al., 2011). In α4 KO mice the increases in firing rate were delayed and attenuated 

compared to WT mice, and also lacked burst firing activity of neurons in response to 
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nicotine.  Targeted re-expression of α4 restored the ICSA and nicotine sensitive bursting 

properties of VTA DA neurons.  They also found that at terminals in the Acb, both the α4 

and the α6 subunits were necessary to maintain nicotine-sensitive cholinergic regulation of 

DA release (Exley et al., 2011).  To summarize, this study proposed a critical of α4* 

nAChRs in nicotine induced DA neuron activity and in ICSA of nicotine into the VTA, 

whereas α6* nAChRs did not seem necessary in mediating these nicotine induced effects.  

It is important to keep in mind that the parameters under which the study was conducted 

were very site specific (VTA only), and nicotine affects a whole system differently than in 

an isolated system or brain region.  This study also showed both α4 and α6 nicotinic 

subunits are important for gating DA neurotransmission in the Acb (Exley et al., 2011). 

 Smoking dependence is due to complex behavioral traits that are influenced by 

genetics (Rose et al., 2009).  Recent genetic association studies have reported variation in 

the CHRNA6 gene was associated with tobacco dependence in Caucasians (Hoft et al., 

2009).  Another study found associations between CHRNA6 and CHRNB3 and subjective 

responses to smoking (Zeiger et al., 2008).  This study found two CHRNB3 SNPs (rs4950 

and rs13280604) that were significantly associated with subjective response factors to 

initial tobacco use.  CHRNB3 gene codes for β3, which is an accessory subunit that been 

shown to be expressed very often with α6* nAChR subtypes (Cui et al., 2003; Gotti et al., 

2006). 

In our hands, using CPP, which heavily involves conditioning and cues, we 

hypothesized that both α6β2* nAChRs in the Acb are involved in mediating the effects of 

nicotine place preference. It is of interest to determine the significance of the several 



www.manaraa.com

 

28 

nicotinic receptor subtypes containing α6 and β2 nicotinic subunits to nicotine reward by 

exploring α6*nAChRs and also α4* nAChRs using the pharmacological and genetic tools 

available to us. 

 

1.7 The Role of α4 Containing nAChRs in Nicotine Reward and Reinforcement 

It is well known that the α4 subunit is most often co-expressed with the β2 subunit 

and that α4β2* nAChRs have the highest affinity for nicotine and display the most 

abundant binding to nicotine and nicotinic agonists in the CNS (Changeux, 2005).   α4β2* 

nAChRs are highly expressed in the midbrain (Klink et al., 2001), and previous work has 

illustrated the necessity of β2* nAChRs for nicotine reward and reinforcement in rodents 

(Corrigall et al., 1994; Maskos et al., 2005; Picciotto, 2003; Pons et al., 2008; Walters et 

al., 2006).  One study observed a loss of nicotine reinforcement in α4 KO mice, and 

reintroduction of the missing subunit in the VTA of the KO mouse rescued this phenotype 

(Pons et al., 2008).  Another study showed that α4 KO mice displayed a decrease for 

nicotine ICSA into the VTA, and systemic administration of 30ug/kg nicotine did not 

result in increased firing rate of DA neurons in this brain region (Exley et al., 2011).  This 

study also found that at terminals in the Acb, both the α4 and the α6 subunits were 

necessary to maintain nicotine-sensitive cholinergic regulation of DA release.    Studies 

have also shown that DA levels in the striatum of α4 and β2 KO mice do not increase in 

response to nicotine, which supports the notion that α4β2* nAChRs are necessary for DA 

release, which is a crucial component of drug reward and reinforcement (Marubio et al. 

2003; Picciotto et al., 1998).  Interestingly the α4 KO mice generated by Changeux 
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colleagues had increased basal DA levels in the striatum compared to WT counterparts 

(Marubio et al., 2003).  This suggests that α4* nAChRs may play a role in the tonic control 

of DA in mesostriatal regions of the brain.  Although there were elevated basal DA levels 

in striatum of α4 KO mice, nicotine failed to induce an increase in striatal DA (Marubio et 

al., 2003).  Another study showed that a single point mutation, Leu9’
�Ala9’, of the α4 

subunit in mice rendered α4* nAChRs hypersensitive to nicotine, and illustrated that 

activation of these receptors by low doses of nicotine was sufficient for nicotine reward as 

measured by CPP, tolerance as measured by hypothermia, and sensitization as measured 

by locomotor activity (Tapper et al., 2004).   

One key study engineered mice where the α4 subunit was deleted only in 

dopaminergic neurons (McGranahan et al., 2011).  This was accomplished by first 

generating mice where exon 5 (codes for channel of the receptor) of the α4 gene was 

‘floxed’ (flanked on either side by loxP recognition sequences).  These lox-only mice were 

then bred to KI mice that expressed Cre-recombinase 5’ to the DA transporter gene, which 

consequently selectively eliminated α4 subunit expression from dopaminergic neurons (α4-

DA mice) (McGranahan et al., 2011).  These mice progressed our understanding of the role 

of α4* nAChRs specifically in dopaminergic pathways in the brain that are heavily 

implicated in drug reward.  Using these α4-DA mice, the study revealed that α4* nAChRs 

specifically on dopaminergic neurons were necessary for nicotine place preference, but not 

for cocaine place preference.  They also demonstrated that α4* nAChRs on dopaminergic 

neurons were necessary for the anxiolytic effects of nicotine in the elevated plus maze test, 
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and were also involved in the sensitivity to the locomotor depressing effects of nicotine 

(McGranahan et al., 2011).  

Recently, Cahir et al. (2011) reported that mice null for the α4 nicotinic subunit 

showed similar place preference scores to WT littermates for 0.5 mg/kg nicotine (i.p.).  

They also reported that the same dose of nicotine used caused significant locomotor 

depression in WT but hyperactivity in α4 KO mice; overall results proposed a role for α4 

in the locomotor depressant effects but not in the reward like effects of nicotine (Cahir et 

al., 2011).  Data from this study is in disagreement with other studies that proposed that 

α4* nAChR are important for nicotine reward (Mcgranahan et al., 2011; Pons et al., 2008; 

Tapper et al., 2004).  When reviewing the study more closely, several factors could 

account for this discrepancy.  This study injected 0.5 mg/kg nicotine i.p. and used a biased 

design for place conditioning.  The study failed to include a control group of mice that 

received only saline injections, which is important so that preference scores of mice that 

received only saline can be compared to the preference scores of mice that received 

nicotine.  It also ensures that stress from handling and injections did not affect place 

conditioning scores in the study. This is also an important control considering the biased 

design they used for CPP where they paired drug treatment to the context that was initially 

less preferred by mice.  Also, because they used a biased design, the initial preference for 

the compartments that mice were paired to (baseline preference scores) were not taken into 

consideration when calculating final preference scores.  One study observed that mice 

given saline on both sides of a CPP compartment in a biased study resulted in higher 

preference scores for the initially less preferred side (Cunningham, 2003).  This can be 
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considered habituation or ‘disinhibition’ of the mice to the initially less preferred side of 

the CPP compartment because they acclimated to the environment over conditioning 

sessions with CPP.  These are some factors that could explain why Cahir et al. (2011) did 

not find different nicotine CPP in α4 KO mice compared to WT littermates.  

Taking into account all the current evidence implicating α4* nAChRs in nicotine 

reward and DA neurotransmission, we hypothesized that α4β2* nAChRs in the Acb are 

critical mediators of the conditioned hedonic effects of nicotine-associated cues which we 

assessed in the conditioned place preference test. 

1.8 Involvement of the Nicotinic-Cholinergic System in Cocaine Reward and 

Reinforcement. 

Cocaine is a powerful psychostimulant that inhibits dopamine transporters leading 

to a sustained elevation of DA levels in several brain regions including the Nucleus 

Accumbens (NAc); a process that is considered critical to development of addiction 

(Nestler, 2005).  The cocaine induced short-term buildup of DA results in a state of 

euphoria which is thought to motivate repeated use thereby altering behavior and 

intensifying stimulus drug associations (Di Chiara, 1999).  Repeated exposure to cocaine 

results in alterations in genetic activity and nerve cell structure that last for months 

(Nestler, 2005), and this contributes to relapse in individuals who are exposed to cocaine 

related cues in surrounding environment, affecting incentive salience (Ehrman et al., 1992; 

Reid et al., 1998).  Incentive salience is the importance given to the drug, due to its 

reinforcing effects, that motivate or encourage one to seek the drug at all costs.  The 

reactivity to cocaine cues can persist in patients who have abstained from cocaine use for 
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many months (Rohsenow et al., 1990).  The use of cocaine cues to induce cocaine craving 

in patients has been a useful model used to assess the efficacy of medications for their 

ability to reduce cocaine craving.  Reid at al. (1998) showed that nicotine enhances cue-

induced cocaine craving, which coincides with other studies reporting co-morbidity of 

cigarette smoking in cocaine addicts (Budney et al., 1993).  One study reported that 

patients found that mentholated cigarettes can prolong the hedonic state induced by 

cocaine, and can even alleviate the craving for cocaine when cocaine is not available to 

them (Sees and Clark, 1991).  Reid et al. (1999) also showed using cocaine cues to induce 

craving for cocaine, that administering a 2.5 mg tablet dose of mecamylamine  (a non-

selective nicotinic antagonist) to patients reduced the reports of cocaine craving (Reid et 

al., 1999).   

There have been several behavioral studies that investigated the role of nicotine and 

nicotinic receptors in cocaine dependence in rodents.  Horger et al. (1992) observed 

increased self-administration of cocaine in rats that were pre-exposed to nicotine.  

Champtiaux et al. (2005) showed that DHβE (β2* nAChR antagonist) microinjected into 

the VTA prevented cocaine locomotor sensitization.  This effect was not seen with 

microinjections of MLA (α7* nAChR antagonist), which implicates β2* nAChR 

involvement in cocaine sensitization (Champtiaux et al., 2006).  Zachariou et al. (2001) 

found that β2 KO mice displayed decreased place preference for 5mg/kg cocaine compared 

to WT littermates, and also observed a decrease in place preference for cocaine with co-

treatment of 1mg/kg mecamylamine in B6 mice.  Interestingly, Picciotto and colleagues 

could train β2 KO mice to self administer cocaine (Picciotto et al., 1998); this could be 



www.manaraa.com

 

33 

explained by the possibility that these mice compensated due to the lack of β2 in the 

system by increased self administration of cocaine in order to achieve the rewarding and 

reinforcing effects of the drug.    

Other studies observed a dose-dependent decrease of cocaine self-administration 

with pre-treatment of non-selective nAChR antagonists, mecamylamine or MRZ 2/621 

(Levin et al. 2000; Blokhina et al. 2005). A recent study by Levine et al. (2011) showed 

that pre-treatment of mice with nicotine increased the response to cocaine as observed by a 

98% increase in locomotor sensitization and 78% increase in CPP.  This effect was not 

observed when reversing the order of drug administration (cocaine had no effect on 

nicotine sensitization and reward) (Levine et al., 2011).  Previous research has also shown 

that drugs of abuse, including psychostimulants like cocaine, enhance release of ACh in 

the Acb and increase responsiveness of cholinergic neurons during acute and repeated drug 

exposure (Fiserová et al., 1999; Nestby et al., 1997).  

 These studies, along with several others have linked nAChRs to cocaine reward, 

reinforcement, and sensitization (Champtiaux et al., 2006; Horger et al. 1992; Levine et al., 

2011; Reid et al. 1998; Reid et al., 1999; Zachariou et al., 2001; Zanetti et al.,2007; Levin 

et al. 2000; Blokhina et al. 2005; Fiserová et al., 1999; Nestby et al., 1997)).  

Our research targeted α6* and α4* nAChRs subtypes in the investigation of cocaine 

reward because these receptors are often co-expressed with the β2 subunit, and β2* 

nAChRs are known to be crucial for nicotine reinforcement and reward (Maskos et al., 

2005; Picciotto et al., 1998; Walters et al., 2006) and have also been shown to play a role 

in cocaine reward (Zachariou et al., 2001).  Previous research has shown that most, if not 
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all, DA terminals express nicotinic receptors, with β2 identified as the common subunit 

expressed (Salminen et al., 2007; Zoli et al., 2012).  However, implications of the variety 

of nAChR subtypes expressed on DA terminals are not yet fully understood.  Recent 

studies have shown that α6β2* nAChRs are expressed on dopaminergic neurons that play 

major roles in addiction to nicotine.  Indeed, α6β2* nAChRs subtypes have high 

expression in catecholaminergic nuclei in midbrain regions thought to mediate drug 

reward, play a major role in presynaptic DA release (Grady et al., 2002; Whiteaker et al., 

2000) and mediate nicotine reward and reinforcement in rodents (Brunzell et al., 2010; 

Gotti et al., 2010; Jackson et al., 2009; Pons et al., 2008).  Of equal relevance, α4β2* 

nAChRs are also highly expressed in the midbrain (Klink et al., 2001), and previous work 

has illustrated the sufficiency of α4* nAChRs (Tapper et al., 2005) and the necessity of 

α4β2* nAChRs for nicotine reward and reinforcement (McGranahan et al., 2011; Pons et 

al., 2008)  and nicotine induced DA release in rodents (Drenan et al., 2010; Marubio et al., 

2003).  Elucidating the role of nicotinic cholinergic receptors in psychostimulant induced 

behavioral reward, and investigating novel pathways involved in cocaine reward will pave 

a path for the development of potentially successful treatments for cocaine addiction in the 

future.   

The goal of this dissertation was to investigate the role of α6β2* and α4β2* nAChR 

subtypes in the acquisition and expression of nicotine and cocaine place preference, 

because CPP is a well established test of drug induced conditioning involving contextual 

cues which is an important aspect of learning and memory underlying addiction.  As 

previously discussed, α6β2* and α4β2* nAChRs have been implicated in nicotine reward 
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and reinforcement, and to date β2* nAChRs have been implicated in cocaine reward, 

reinforcement, and sensitization.  We set out to characterize the nicotinic subtype (α6β2*, 

α4α6β2*, and/or α4β2*), and the neuro-anatomical locus (Acb) contributing to nicotine 

and cocaine reward-like effects using pharmacological antagonism of α6β2* nAChRs and 

genetic deletion of the α6 and α4 subunits in mice.  Our hypothesis was that the α6β2* 

nAChRs in the Acb are critical for nicotine and cocaine place preference, whereas α4β2* 

nAChRs are critical for nicotine place preference, but are not involved in cocaine place 

preference.   
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CHAPTER TWO 

 
Materials and Methods 

 
 

2.1 Drugs 

For studies involving nicotine, (-)-nicotine hydrogen tartrate salt [(-)-1-methyl-2-

(3-pyridyl)pyrrolidine (+)-bitartrate salt] was purchased from Sigma Chemical Co. (St. 

Louis, Mo), and was dissolved in physiological 0.9% sodium chloride (saline). All doses 

are expressed as the free base of the drug and were always injected subcutaneously at a 

volume of 10 ml/kg body weight.  Nicotine was prepared fresh for every experiment and  

refrigerated  for no longer than one week.  It was kept in a glass vile wrapped in aluminium 

to protect the nicotine from degradation.  

 For studies involving cocaine, cocaine was provided by the National Institute for 

Drug Abuse (NIDA), was dissolved in saline, and was always injected intraperitonealy at a 

volume of 10 ml/kg body weight, and stock solution was also kept refrigerated to maintain 

the integrity of the compound.  A fresh solution of cocaine was prepared for each CPP 

experiment.  

α-Conotoxin MII [H9A;L15A] was provided by Dr. Michael McIntosh at the 

University of Utah.  Conotoxin was dissolved in small aliquots of  saline in an -18--20°C 

freezer until use.  The doses used in the studies were calculated based on IC50 values of 

the compound at nAChRs (refer to Table 1) from McIntosh et al. (2004).  

For studies involving lithium, lithium chloride was purchased from Sigma 

Chemical Co. (St. Louis, Mo), and was dissolved in physiological saline.  Lithium was 
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always injected intraperitonealy at a volume of 10 ml/kg body weight, and stock solution 

was kept refrigerated to maintain the integrity of the compound.    

2.2 Food  

Food used to induce place preference in mice included ‘Reese’s’ peanut butter 

chips and cheesecake.  The Reese’s peanut butter chips are available at any grocery store, 

and the ingredient label on the package reads: ‘partially defatted peanuts, sugar, partially 

hydrogenated vegetable oil (palm kernel oil and soybean oil), corn syrup solids, dextrose, 

reduced minerals whey (milk), contains 2% or less of salt, vanillin (artificial flavor), and 

soy lecithin.’  The cheesecake was purchased from Shockoe Espresso Mill Mountain 

Coffee and Tea in Richmond, Virginia.   

2.3 Animals  

Animals used in the pharmacological experiments were male B6 mice from the 

Jackson Laboratory (Bar Harbor, ME) that were 8-10 weeks old, unless otherwise noted.  

In order to minimize biological variability due to estrous cycling, none of the experiments 

involved female mice.  Animal maintenance and research were conducted in accordance 

with the guidelines provided by the NIH Committee on Laboratory Animal Resources.  

Animals were housed, 4 per cage, in temperature- and humidity-controlled housing rooms, 

and a 12 hr light-dark cycle (lights on from 7 a.m. to 7 p.m.).  Experiments were performed 

during the light cycle.  The facility was licensed by the United States Department of 

Agriculture and accredited by the Association for Assessment and Accreditation of 
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Laboratory Animal Care (AAALAC), and protocols were approved by the Institutional 

Animal Care and Use Committee of Virginia Commonwealth University (Richmond, VA).  

 For studies involving genetically modified mice, B6 provided the background 

strain for our α6 and α4 KO and WT mice.  These KO mouse lines are backcrossed to the 

B6 strain every year to maintain vigor, and have been backcrossed for at least 10 

generations. Healthy viable mice null for the α6 nicotinic subunit were provided by Dr. 

Uwe Maskos at Institut Pasteur (Paris, France) (Champtiaux et al., 2002).  Viable mice null 

for the α4 subunit were provided by Dr. Henry Lester at the California Institute of 

Technology, with the permission of Dr. John Drago who generated them at Monash 

University, in Australia (Ross et al., 2000).  KO mice used in the study were generated 

from HETxHET breeders and from confirmed KOxKO breeders.   

2.4 Place Conditioning Involving Nicotine, Cocaine, or Lithium  

 The unbiased place conditioning test is well established in our lab and was used for 

the last several years in pharmacological and genetic studies (Damaj et al., 2010; Grabus et 

al., 2006; Jackson et al., 2009; Merritt et al., 2008; Walters et al., 2006).  CPP is a test that 

reflects a preference for a context due to the repeated association between the context and 

the drug (refer to section 1.3).  Animals can be trained readily and the procedure has been 

well established in various strains of mice our laboratory uses (e.g. ICR mice and B6 

mice).  The procedure also has the ability to test compounds, such as lithium, for place 

conditioned avoidance (CPA). CPP (or CPA) is conducted in a room dedicated solely to 

this procedure, in dim lighting, and with ambient sound from fans to drown out extraneous 
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background noise.  Each mouse was handled for one minute each, for 3 days prior to CPP 

testing and mice were also brought into the CPP room on a cart and allowed to acclimate to 

room lighting and room temperature for at least thirty minutes, if not longer when possible, 

before each CPP session.  The boxes were wiped down after every session with water and 

1% Triton disinfectant.   

Place conditioning chambers and software were purchased from Med Associates 

(St. Albans, VT). The conditioning apparatus consisted of three distinct compartments that 

were separated by doors that could slide up.  The black and white compartments (each 16.8 

cm long) served as the context that was paired to the psychoactive drug.  Each side had 

distinct visual (color) and tactile (flooring) cues to allow the animal to learn to associate 

the environment with the treatment it was paired to. The black compartment had stainless 

steel grid rod flooring consisting of 3.2 mm rods placed on 7.9 mm centers. The white 

compartment had a 6.35×6.35-mm stainless steel mesh floor.  The small gray compartment 

(7.2 cm long) was gray in color with a smooth PVC floor, and served as a thoroughfare 

between the two sides All chambers had hinged, clear porous polycarbonate lids that were 

closed during testing.  Infrared photobeam strips that were located within each chamber 

provided the data that was collected by an attached computer.   

Place conditioning was conducted in three phases: preconditioning day, 

conditioning days, and post-conditioning day. On preconditioning day, mice are allowed to 

move freely among all three compartments for 15 min (900 sec), after a 5 minute 

habituation period in the gray compartment. Time spent on each side is recorded and these 

data are used to separate the animals into groups of equal bias. Days 2-4 are conditioning 
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days, where animals got either a saline or psychoactive drug injection, and were then 

confined to either the white or black compartment for 20 minutes for the morning session.  

4 hours later, mice were injected with the alternate treatment and placed in the opposite 

compartment of the chamber for 20 minutes during the afternoon session. Groups were 

counterbalanced equally in order to ensure that some mice get drug in the morning while 

others got it in the afternoon, and some mice got drug injections paired to the white 

compartment while others had drug paired to black. Day 5 was a drug-free post-

conditioning test day when mice are allowed to move freely among the CPP chamber and 

time spent in each side was recorded. Scores were calculated by subtracting the time spent 

in drug paired side on pre-conditioning day from time spent in drug paired side on post-

conditioning day. 

2.5 Conditioned Place Preference for Food Reward. 

 For studies involving food conditioned place preference.  The procedure followed 

the general outline stated in the above paragraph, with a few minor modifications.  No 

injections were given to these mice during conditioning days, they were simply exposed to 

the food, be that the food pellet that made up their usual diet, peanut butter chips, or room 

temperature cheesecake.  Peanut butter chips and cheesecake were always placed in a small 

plastic weigh tray, and the mice were exposed to the same tray every day, which was 

placed in the exact same corner of the CPP chamber for every conditioning session in order 

to minimize any novelty to the procedure to allow them to make the association of the food 

exposure to the context in the chamber.  The mice were also food restricted for 4 hours 

before each conditioning session.  There was one extra day of conditioning, giving a total 
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of 4 conditioning days, in order to attain statistically significant food induced place 

preference in mice.   Also each conditioning session was 40 minutes long instead of the 

usual 20 minute session for place conditioning with drug.   

2.6 Intracerebroventricular Surgeries and Injections 

         Antagonists selective for α6β2* nAChRs that can be administered systemically are 

still being developed and are not readily available for use.  Consequently, we used α-

Conotoxin MII [H9A;L15A] which is a peptidic compound that cannot cross the blood 

brain barrier and was administered centrally via intracerebroventricular (i.c.v.) injections.  

Mice undergoing i.c.v. surgeries were anesthetized with an i.p. injection of 45 mg/kg 

sodium pentobarbital.  An incision was made at the scalp of the mouse midway between 

the eyes and ears, to expose cranial sutures.  The skin that was cut resulted in a flap that 

was put back into place at the end of the surgery to keep the site free of debris.  Using the 

stereotaxic apparatus, a site of injection was made, through the dura mater, with the 

following coordinates: -0.6mm AP; +1.3 mm ML, with respect to bregma, and −2.1 mm 

DV from the skull’s surface. After the surgery, animals were returned to clean home cages 

and were allowed to recover for 20-24 hours.   

On CPP test day, i.c.v. injections were made directly into the skull using a 

Hamilton syringe.  Sterile saline soaked cotton swabs were used to lightly nudge the flap 

of skin to expose the injection site, while gently restraining mouse by holding the nape of 

the neck.  5 µl of α-Conotoxin MII [H9A,L15A] or saline was given, with the syringe 

being held in place for 30 seconds to allow some time for drug diffusion into the lateral 

ventricle. Following the injection period, animals were returned to home cages and allowed 
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5 minutes to recover from the light restraint required for injection before being placed into 

the CPP chamber.  After the 5 minute habituation period, time was recorded for 15 minutes 

as the mouse freely explored all compartments of the CPP chamber.  

2.7 Intracranial Cannula Implantation and Infusions 

For cannulation surgeries, mice were anesthetized with an injection of 45 mg/kg 

sodium pentobarbital (i.p.). Once a mouse was readied for surgery, an incision was made 

to expose skull of mouse.  Using the stereotaxic apparatus, the mouse’s head was leveled, 

and a site of cannula implantation was found with the following coordinates for the lateral 

ventricle: -0.6mm AP; +1.3 mm ML, with respect to bregma, and −2.1mm DV from the 

skull’s surface, the following coordinates for the nucleus accumbens (Acb): +1.25mm AP; 

±0.75 mm ML, with respect to bregma, and −4.3mm DV from the skull’s surface, and the 

following coordinates for the cingulate cortex: +1 mm AP; ±0.5 mm ML, with respect to 

bregma, and -2.0mm DV from the skull’s surface.  A guide cannula was adhered to the 

skull using dental glue which was then reinforced with dental cement.  The cannulas used 

in our studies were 26 gauge, with an 8 mm pedestal height for the bilateral Acb cannulas 

and a 5 mm pedestal height for the lateral ventricle and cingulate cortex cannulas.  These 

pedestals had a 3.5 mm diameter.  These cannulas fit 33 gauge internal cannulas for 

injections.  A dummy cannula was inserted to maintain integrity of the guide.  After 

completion of surgeries, animals were returned to clean home cages and were allowed to 

recover for 5 days before behavioral testing.  At the end of the experiment, each brain was 

collected to evaluate accurate cannula placement.  
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For lateral ventricle infusions: during the three conditioning days of the CPP 

procedure, before both morning and afternoon conditioning sessions, mice received 

unilateral infusions of α-Conotoxin MII [H9AL15A], or saline, 5 minutes before injection 

with psychoactive drug of interest or saline (i.p.).  Infusions were conducted using a micro-

infusion pump at a rate of 25nl/sec (for 2 minutes total, 3 µl total volume) through a sterile 

33 gauge internal cannula extending 0.1mm beyond the guide, which is attached to a 

Hamilton syringe via PE50 tubing.  

For Acb infusions: Before both morning and afternoon conditioning sessions, mice 

received bilateral infusions of α-Conotoxin MII [H9AL15A] or saline. Infusions were done 

using a micro-infusion pump at a rate of 16.7nl/ sec for 30 seconds (0.5 µl total volume) in 

a similar fashion to lateral ventricle infusions (described above).  

For cingulate cortex infusions: during the three conditioning days of the CPP 

procedure, before both morning and afternoon conditioning sessions, mice received 

unilateral infusions of α-Conotoxin MII [H9AL15A], or saline, 5 minutes before injection 

with psychoactive drug of interest or saline (i.p.). Infusions were carried out using an 

internal connected to a micro-infusion pump via Hamilton syringe and PE50 tubing. Drug 

(or saline) was infused at a rate of 16.7nl/ sec for 30 seconds.  

2.8 Histology 

To assess accurate cannula placement, methylene blue dye was injected centrally, 

followed by cervical dislocation, decapitation, and harvesting of brain.  Whole brain tissue 

was then fixed in a formalin/formaldehyde solution for 48 hours before being sliced at 

thickness of 50-60µm in a cryostat.  Tissue slices were then stained with Nissl using a 
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sequence of steps involving decrement concentrations of ethanol in distilled water to 

hydrate tissue slices, followed by staining with cresyl violet, then dehydrating the tissue 

slices using incremental concentrations of ethanol.  Each site of injection was then 

reconstructed and marked on a worksheet of mouse bran coronal slice image for 

assessment, and any sites that were not in the target area were not included in the final data 

set. 

 

2.9 Statistical Analyses 

All CPP results are expressed as mean preference scores ± standard error of the 

mean.  Preference scores are measured in seconds and reflect the time spent in the drug 

paired side pre-conditioning (baseline) subtracted from the time the mice spend in the drug 

paired side during post conditioning day.  Statistical analyses of all CPP studies were 

performed with an analysis of variance test (ANOVA) followed by a post-hoc analysis 

with Student Newman-Keuls test when appropriate.  P-values of <0.05 were considered to 

be statistically significant.  All data were graphed and statistical analyses performed using 

GraphPad Prism version 5.00 for Windows; GraphPad Software; San Diego California 

USA.  
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CHAPTER THREE 

Results: The Role of α6 Containing nAChRs in Nicotine Conditioned Place 

Preference 

 

3.1 Nicotine Place Preference in α6 Knock Out Mice 

Previous work has shown that α6β2* nAChRs are involved in nicotine induced DA 

neurotransmission in Acb (Exley et al., 2008; Drenan et al., 2008), and that α4β2* and 

α6β2* nAChR mediate nicotine reinforcement and reward in mice (Pons et al, 2008; 

Jackson et al., 2009; Brunzell et al, 2010; Gotti et al., 2010; Drenan et al., 2010; Exley et 

al., 2011).  Using our CPP procedure, α6 KO male mice were conditioned with 0.25, 0.5, 

or 1 mg/kg nicotine (s.c.) for three days and preference scores were assessed on test day. 

Figure 3.1 illustrates the capacity of nicotine to induce CPP in α6 KO mice and their WT 

littermates.  As mentioned previously (section 1.5), the dose of 0.5 mg/kg nicotine (s.c) 

induced significant CPP in WT mice, which is the dose that normally produces the most 

robust place preference in our hands (F(7, 63) = 4.803; p = 0.0003).  However, this dose 

failed to produce a CPP response in α6 KO mice.  In contrast, at the highest dose of 

nicotine tested, 1 mg/kg nicotine, we were surprised to see a conditioned place preference 

for nicotine in α6 KO mice that was significantly higher than α6 WT littermates.   

Subsequently, in order to determine which receptor subtype was contributing to CPP 

observed in α6 KO mice at 1 mg/kg nicotine, we assessed the effect of dihydro-beta-

erythroidine (DHβE), a relatively selective β2* nAChR antagonist, on place preference 

induced by 1 mg/kg nicotine in α6 KO mice.  2mg/kg DHβE (s.c.) was administered 5 
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minutes before 1 mg/kg nicotine injection on conditioning days of the CPP procedure.  

Figure 3.2 illustrates the effect of DHβE on nicotine induced place preference for 1 mg/kg 

nicotine in α6 KO mice. Pre-treatment with DHβE followed by nicotine exposure on 

conditioning days resulted in significant attenuation of nicotine place preference in α6 KO 

mice.  α6 KO mice that received a pretreatment of saline before nicotine exposure had 

significant CPP compared to saline controls and compared to the nicotine group receiving 

DHβE (F(7, 72) =6.005; p = 0.0003).   

Overall, these results suggest that α6β2* nAChRs mediate nicotine place preference at 

doses that, when given s.c., typically produce robust place preference in mice.  However, at 

higher doses of nicotine, this effect is overcome, and this is mediated by β2* nAChRs, as 

indicated by the datum that illustrates that DHβE, a β2* nicotinic receptor antagonist, 

attenuates 1 mg/kg nicotine place preference in α6 KO mice. 
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Figure 3.1 

 

sa
lin

e 

ni
co

tin
e 0

.25
 m

g/
kg

  

ni
co

tin
e 0

.5 
m

g/
kg

  

nic
ot

ine
 1 

m
g/

kg
   

-50

0

50

100

150
    WTα6 

*

$

α6     KO

#

*

pr
ef

er
en

ce
 s

co
re

 (
se

co
nd

s)

 

 

 

 

 

 

Figure 3.1 Nicotine Induced Place Preference in α6 KO Mice. 

Robust place preference scores are observed in α6 WT mice for 0.5 mg/kg nicotine (s.c.), 
whereas α6 KO mice failed to show significant preference for nicotine at 0.5 mg/kg.  
However, nicotine place preference occurs in α6 KO mice at a higher dose of 1mg/kg 
nicotine, which does not produce place preference in WT counterparts.  Place preference 
scores for nicotine 0.5 mg/kg in α6 WT mice and nicotine 1mg/kg in α6 KO mice were 
significantly greater than all other treatment and genotype groups (*p<0.05 compared to 
respective saline control group; $p<0.05 compared to WT 0.5 mg/kg nicotine; #p<0.05 
compared to KO 1 mg/kg nicotine). Results are expressed as mean preference scores 
±SEMs.  
 

 

n 5-12 

P value 0.0003 

F (7, 63) 4.803 

R squared 0.3752 
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Figure 3.2  
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Figure 3.2 The Effect of DHβE on Nicotine Induced Place Preference in α6 KO Mice.  

Nicotine induced place preference occurred in α6 KO mice at 1 mg/kg nicotine (**p<0.01 
compared to saline groups), and had significantly higher scores than α6 WT littermates that 
received 1mg/kg, and α6 KO and WT mice that were treated with DHβE (#p<0.05 
compared to α6 KO-1mg/kg nicotine group).  α6 KO mice failed to show significant 
preference for 1 mg/kg nicotine when given a pre-injection of 2 mg/kg DHβE (s.c.).   
Results are expressed as mean preference scores ±SEMs.  
  

n 4-12 

P value 0.0003 

F (7, 72) 6.005 

R squared 0.4227 
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3.2 The Effect of α-Conotoxin MII [H9A; L15A] on the Expression of Nicotine Place 

Preference.   

Our KO data clearly suggest that α6β2* nAChRs mediate nicotine place preference.  

However recognizing that there are drawbacks and possible developmental compensations 

that can occur in transgenic mice (refer to section 1.4), it was important for us to confirm 

our results using a pharmacological approach.  We assessed the role of α6β2* nicotinic 

receptors in the expression of nicotine induced CPP using the α6β2* nAChR selective 

antagonist, α-Conotoxin MII [H9A; L15A].  Mice received a one time unilateral injection 

of 5µl of 1.5, 4.5, or 6pmol α-Conotoxin MII [H9A; L15A] into the lateral ventricle (i.c.v.) 

on the post-conditioning test day, which was after the mice were conditioned for 3 days 

with 0.5 mg/kg nicotine (s.c.).  Figure 3.3 depicts the effect of α-Conotoxin MII [H9A; 

L15A] on the expression of nicotine place preference in male B6 mice.  We observed a 

dose dependent decrease in the expression of nicotine place preference with α-Conotoxin 

MII [H9A; L15A] injections (F(5, 38) = 2.504; p = 0.0455).  Mice that received a saline 

injection on test day portrayed significant place preference for nicotine.  In contrast, mice 

receiving 1.5 pmol α-Conotoxin MII [H9A; L15A] had a slightly lower, but significant 

place preference for nicotine, compared to saline control groups.  Conversely, Mice that 

received 4.5 and 6 pmol α-Conotoxin MII [H9A; L15A] did not show place preference for 

nicotine.  This datum suggests that pharmacological blockade of α6β2* nAChRs results in 

a decrease of nicotine place preference, and therefore a decrease in the reward-like effects 

of nicotine. 
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  It was imperative to ensure that the effect of α-Conotoxin MII [H9A; L15A] was 

not simply due to a locomotor impairment of the mice on test day, therefore locomotor 

counts were reviewed. Table 2 shows that α-Conotoxin MII [H9A; L15A] did not have an 

effect on the locomotor activity of mice on test day. 

Due to the nature of the inverted U shaped dose effect curve observed in nicotine 

CPP in B6 mice, it was also important to confirm that α-Conotoxin MII [H9A; L15A] was 

not acting by enhancing the effects of nicotine, which would result in a shift to the 

descending end of the inverted U shaped dose effect curve for nicotine CPP.    We 

therefore tested the effect of α-Conotoxin MII [H9A; L15A] on place preference induced 

by a lower dose of nicotine, 0.25 mg/kg (s.c.).  If the conotoxin acted by enhancing the 

effects of nicotine we would then be able to unmask this effect and would expect scores 

similar to 0.5 mg/kg nicotine, which as previously mentioned, typically produces the most 

robust CPP scores in our lab.  A decrease in CPP would suggest that the conotoxin is 

acting by blocking the reward like effects of nicotine that produce CPP.  Figure 3.4 

demonstrates that α-Conotoxin MII [H9A; L15A] does not enhance place preference 

induced by 0.25 mg/kg nicotine, and therefore does not act by enhancing the effects of 

nicotine but rather by blocking the effects of nicotine that result in CPP. 
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Figure 3.3 
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(Jackson et al., 2009) 

 

 
 
 
 
 
Figure 3.3 The Effect of α-Conotoxin MII [H9A; L15A] on the Expression of Nicotine 
Place Preference.  
  
Injection of α-Conotoxin MII [H9A; L15A] into the lateral ventricle on test day of CPP 
resulted in a dose dependent decrease in the expression of nicotine place preference.  Both 
Saline-nicotine 0.5 mg/kg group and 1.5 pmol MII-nicotine 0.5 mg/kg group had 
significantly higher place preference for nicotine compared to the saline control groups 
(*p<0.05 compared to saline groups).  Nicotine groups that were exposed to either 4.5 or 
6pmol MII resulted in attenuated place preference scores for nicotine.   Results are 
expressed as mean preference scores ±SEMs.  
 

n 6-9 

P value 0.0455 

F (5,38) 2.504 

R squared 0.2339 



www.manaraa.com

 

52 

Table 2.  

Treatment groups 

(s.c.-i.c.v.) 

Average activity counts in drug-

paired compartment (seconds) 

Saline- Saline 509.8 ± 31.7 

Saline- 6 pmol MII 524.8  ± 140.1 

0.5 Nicotine- Saline 471.1 ± 59.4 

0.5 Nicotine- 1.5 pmol MII 455.8 ± 185.1 

0.5 Nicotine- 4.5 pmol MII 492.9 ± 92.9 

0.5 Nicotine- 6 pmol MII 486.1 ± 75.1 

 

Table 2. Locomotor scores on Test Day for Expression of Nicotine Place Preference. 

This table shows that α-Conotoxin MII [H9A;L15A] did not affect locomotor activity on 
test day.  Locomotor scores were assessed by the number of interruptions of the photocell 
beams in the CPP compartments.  
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Figure 3.4 
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Figure 3.4.  The Effect of α-Conotoxin MII [H9A; L15A] on the Expression of Low 
Dose Nicotine Induced Place Preference.   
 
Injection of α-Conotoxin MII [H9A; L15A] on test day of CPP did not result in an 
enhancement of the expression of nicotine place preference, but rather a decrease in the 
already low preference score induced by 0.25 mg/kg nicotine (s.c.).  Results are expressed 
as mean preference scores ±SEMs.  
 

 

 

n 4-7 

P value 0.6041 

F(4, 23) 0.6959 

R squared 0.1334 
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Table 3 

Treatment groups 

(s.c.-i.c.v.) 

Average activity counts in drug-

paired compartment (seconds) 

Saline - Saline 381.50 ±75.18 

Saline -12 pmol MII 328.00 ±83.16 

0.25 Nicotine – Saline 423.73 ± 74.72 

0.25 Nicotine - 6 pmol MII 362.00 ± 29.58 

0.25 Nicotine- 12 pmol MII 335.10 ± 50.47 

 

Table 3. Locomotor scores on Test Day for Expression of Low Dose Nicotine Place 

Preference. 

This table shows that α-Conotoxin MII [H9A;L15A] did not affect locomotor activity on 
test day.  Locomotor scores were assessed by the number of interruptions of the photocell 
beams in the CPP compartments.  
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3.3 The Effect of Intra-Ventricular, Intra- Accumbal, and Intra-Cingulate Cortex 

Infusions α-Conotoxin MII [H9A; L15A] on the Acquisition of Nicotine Place 

Preference.   

We next evaluated the effect of α-Conotoxin MII [H9A; L15A] on the acquisition 

of nicotine place preference.  This differs from exploring the expression of nicotine place 

preference, in that the conotoxin was given during the conditioning days of the procedure 

along with nicotine administration, instead of administering α-Conotoxin MII [H9A; 

L15A] only on test day, thereby targeting different neuromechanisms that mediate reward 

memory, learning, and association of an US to CS (Sanchis-Segura and Spanagel, 2006).  

Figure 1.5 illustrates the effect of α-Conotoxin MII [H9A; L15A] on the acquisition of 

nicotine place preference (Jackson et al., 2009).  Mice that received saline infusions via 

micro-infusion pump into the lateral ventricle followed by 0.5 mg/kg nicotine (s.c.), 

showed a significant place preference for nicotine on test day.  On the other hand, mice 

that were infused with α-Conotoxin MII [H9A; L15A] (i.c.v.) had attenuated place 

preference scores for nicotine on test day in a dose related manner (F(4, 27) = 7.526; p = 

0.0010).  Indeed, mice that received infusions of 3µl of 12pmol α-Conotoxin MII [H9A; 

L15A] (i.c.v.) on nicotine conditioning days had significantly decreased acquisition of 

nicotine place preference compared to the nicotine group that received only saline 

infusions.  These results propose a critical role of α6β2* nAChRs in the acquisition of 

nicotine place preference. 

Intra-ventricular infusions of α-Conotoxin MII [H9A; L15A] result in a diffusion of 

the conotoxin into the entire brain.  To begin determining which brain regions mediate the 
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effect of nicotine place preference, we examined the role of the Acb, due to its location in 

the mesolimbic system.  The Acb is part of the ventral striatum, which receives a large 

dopaminergic input from the VTA has been shown to be involved in drug reward.  It is 

thought that α6β2* nAChRs are located pre-synpatically in the Acb where they are 

involved in DA neurotransmission (Exley et al., 2008).  6pmol and 12pmol of α-Conotoxin 

MII [H9A; L15A] was infused into the Acb on nicotine conditioning days, and place 

preference induced by nicotine was then recorded on test day.  Figure 1.6 shows the effect 

of intra-accumbal α-conotoxin MII [H9A; L15A] infusions on the acquisition of nicotine 

place preference.  The nicotine group the received intra-accumbal saline infusions had a 

significant place preference compared to the nicotine group that received intra-accumbal 

infusions of 3pmol α-Conotoxin MII [H9A; L15A] (F(4, 35) = 7.38; p = 0.0003), which had 

a significant decrease in nicotine place preference.  Overall these results propose that the 

Acb is an important region in the brain for the acquisition of nicotine place preference.   

 As a neuroanatomical control to assess whether the decrease in place preference 

could be attributed to damage to cortex caused by insertion of the cannula guide, we 

investigated the effect of α-Conotoxin MII [H9A; L15A] infusions into the cingulate 

cortex on nicotine place preference.  The cingulate cortex is a brain region (dorsal to the 

Acb) that also receives afferents from the VTA, and also expresses α6β2* nAChRs 

(Champtiaux et al., 2002; Whiteaker et al., 2000).  The effect of intra-cingulate cortex 

infusions of α-Conotoxin MII [H9A; L15A] is depicted in figure 1.7, where there was no 

effect on nicotine induced place preference.  Mice receiving either 12pmol α-Conotoxin 

MII [H9A; L15A] or saline infusions into the cingulate cortex during conditioning days for 
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nicotine displayed significant place preference for nicotine compared to saline control 

groups (F(3,18) = 4.472; p = 0.0379 ).  These results show that the obligatory lesioning of 

cortex inflicted by insertion of the cannula guide does not affect place preference induced 

by nicotine, and shows the selectivity of effect in the Acb.  Based on our data showing that 

intra-accumbal but not intra-cingulate cortex infusion of α-conotoxin MII [H9A; L15A] 

results in a decrease in the acquisition of nicotine place preference, we propose that α6β2* 

nAChRs in the Acb are critical for the acquisition of nicotine place preference. 
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Figure 3.5  
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Figure 3.5.  The Effect Unilateral Intra-Cerebroventricular α-Conotoxin MII [H9A; 
L15A] Infusions on the Acquisition of Nicotine Place Preference.  
 
Unilateral infusions of α-Conotoxin MII [H9A; L15A] into the lateral ventricle on nicotine 
conditioning days resulted in a dose dependent decrease in the acquisition of nicotine place 
preference.  The saline-nicotine 0.5 mg/kg group had significantly higher place preference 
for nicotine compared to saline control groups (**p<0.01 compared to saline groups) and 
compared to the 12 pmol MII-nicotine 0.5 mg/kg group (# p<0.001 compared to saline-
nicotine 0.5 mg/kg group).  Results are expressed as mean preference scores ±SEMs.  
 

 

 

 

 

n 6-12 

P value 0.0010 

F (4, 27) 7.526 

R squared 0.4847 
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Figure 3.6 
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Figure 3.6.  Bilateral Intra-Accumbal α-Conotoxin MII 
[H9A; L15A] Infusions Affect the Acquisition of Nicotine 
Place Preference. 
 
Bilateral intra-accumbal infusions of α-Conotoxin MII [H9A; L15A] on nicotine 
conditioning days resulted in dose dependent decrease in the acquisition of nicotine place 
preference.  Saline-nicotine 0.5 mg/kg group had significantly high place preference scores 
for nicotine compared to the 3pmol MII-nicotine 0.5 mg/kg group (*** p < 0.001 
compared to saline groups, and # p < 0.01 compared to saline-nicotine 0.5 mg/kg group).  
Results are expressed as mean preference scores ±SEMs.  
 

n 6-13 

P value 0.0003 

F (4, 35) 7.380 

R squared 0.4878 
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Figure 1.7 
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Figure 1.7. The Effect of Unilateral Intra-Cingulate 
Cortex Infusion of α-Conotoxin MII [H9A;L15A] on 
the Acquisition of Nicotine Place Preference. 
 
Unilateral intra-cingulate cortex infusions of α-Conotoxin 
MII [H9A; L15A] had no effect on the acquisition of 
nicotine place preference.  Both saline-nicotine 0.5 mg/kg 
and 12pmol MII- nicotine 0.5 mg/kg groups had 
significant place preference scores for nicotine (*p < 0.05 
compared to saline groups). 

n 4-6 

P value 0.0379 

F (3, 18) 4.472 

R squared 0.4484 
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CHAPTER FOUR 

The Role of α6β2* nAChRs in Cocaine Conditioned Place Preference 

4.1. Cocaine Place Preference in α6 KO and α6 WT Mice 

 Previous work has shown that β2* nAChRs are involved in cocaine place 

preference (Zachariou et al., 2001).  Since α6β2* nAChRs are often co-expressed with the 

β2 subunit, and due to the neuroanatomical distribution of α6β2* nAChRs in 

catecholaminergic nuclei in midbrain, which is a brain region known to mediate the 

appetitive and rewarding effects of many psychoactive drugs, we chose to investigate if 

α6β2* nAChRs mediated cocaine place preference.  Using our CPP procedure, α6 KO, 

HET, and WT male mice were conditioned with 20 mg/kg cocaine (i.p.) for three days and 

preference scores were assessed on test day. Figure 4.1 illustrates the capacity of cocaine to 

induce CPP in α6 KO mice and their HET and WT littermates.  We see a genotype 

dependent effect where α6 WT mice displayed significant cocaine place preference, 

whereas place preference for cocaine was abolished in α6 KO counterparts (F(4, 32) = 5.826; 

p = 0.0030).  The α6 HET mice, although having higher scores than α6 KO mice, did not 

portray significant place preference for cocaine.  These results indicate that the α6 nicotinic 

subunit is important for place preference induced by cocaine.  This is the only other 

nicotinic subunit, other than the β2* nicotinic subtype, reported to have a role in cocaine 

reward.
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Figure 4.1  
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Figure 4.1 Cocaine Place Preference in α6 KO and WT Mice. 

α6 KO mice show significantly decreased place preference for 20 mg/kg cocaine compared 
to α6 WT mice, which displayed significant place preference for cocaine at this dose 
(**p<0.01 compared to saline groups; # p<0.01 compared to α6 WT-cocaine 20 mg/kg 
group). 

n 6-15 

P value 0.0030 

F (4, 32) 5.826 

R squared 0.3761 
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4.2. The Effect of α-Conotoxin MII [H9A; L15A] on the Expression of Cocaine Place 

Preference.  

Our KO data encourages the concept that α6β2* nAChRs are important mediators 

of cocaine place preference.  Once again, being aware of possible developmental 

compensations that can occur in transgenic mice (refer to section 1.4), it was important for 

us to validate our results by using a pharmacological approach that studies a system with 

an unaltered gene pool.  We assessed the role of α6* nicotinic receptors in the expression 

of cocaine CPP using α-Conotoxin MII [H9A; L15A].  Following the three days of 

conditioning with 20 mg/kg cocaine (i.p.), mice received a one time unilateral injection of 

6pmol or 12pmol α-Conotoxin MII [H9A; L15A] into the lateral ventricle (i.c.v.) on post-

conditioning test day.  Figure 4.2 illustrates the effect of α-Conotoxin MII [H9A; L15A] on 

the expression of cocaine place preference in male B6 mice.  We observed a dose 

dependent decrease in the expression of cocaine place preference with i.c.v. injections of 

α-Conotoxin MII [H9A; L15A] (F(5, 67) = 3.873; p = 0.0041).  Mice that received a saline 

injection on test day portrayed significant place preference for cocaine.  In contrast, mice 

receiving 6pmol α-Conotoxin MII [H9A; L15A] had lower scores and did not display 

significant place preference for cocaine.  Conversely, mice that received 12pmol α-

Conotoxin MII [H9A; L15A] resulted in a significant attenuation of cocaine place 

preference compared to the saline-cocaine 20 mg/kg group.  This datum suggests that 

pharmacological blockade of α6β2* nAChRs results in a decrease of cocaine place 

preference, and therefore a decrease in the psychosomatic effects of cocaine that result in 

place preference. 
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  It was important to assess the effect of - α-Conotoxin MII [H9A; L15A] on 

locomotion, in order to confirm that there was no locomotor impairment in these mice on 

test day.  Locomotor scores were assessed by the number of interruptions of the photocell 

beams in the CPP compartments.  Table 4 shows that α-Conotoxin MII [H9A; L15A] did 

not have an effect on the locomotor activity of the mice on test day.   
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Figure 4.2 
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Figure 4.2 The Effect of Intracerebroventricular α-Conotoxin MII [H9A; L15A] 
Injection on the Expression of Cocaine Place Preference. 
 
Unilateral injection of α-Conotoxin MII [H9A; L15A] into the lateral ventricle on test day 
of CPP resulted in a dose dependent decrease in the expression of cocaine place 
preference.  The saline-cocaine group had significantly higher place preference scores 
compared to the cocaine group that received 12pmol MII (*p<0.05 compared to saline 
groups; #p<0.05 compared to saline-cocaine group).  

n 4-16 

P value 0.0041 

F (5, 67) 3.873 

R squared 0.2380 
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Table 4 

Treatment groups 

(i.p.-i.c.v.) 

Average activity counts in drug-

paired compartment (seconds) 

Saline - Saline 471.50 ±135.59 

Saline -MII[H9A;L15A], 6 pmol 489.12 ± 107.30 

Saline -MII[H9A;L15A], 12 pmol 478.00 ±26.14 

Cocaine – Saline 543.73 ± 79.42 

Cocaine - MII[H9A;L15A], 6 pmol 472.00 ± 65.49 

Cocaine- MII[H9A;L15A], 12 pmol 495.10 ± 83.91 

 

Table 4.  Locomotor scores on Test Day for Expression of Cocaine Place Preference. 
 
This table shows that α-Conotoxin MII [H9A;L15A] did not affect locomotor activity on 
test day.  Locomotor scores were assessed by the number of interruptions of the photocell 
beams in the CPP compartments.  
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4.3. The of Intra-Cerebroventricular, Intra-Accumbal, and Intra-Cingulate Cortex 

Infusions of α-Conotoxin MII [H9A; L15A] on the Acquisition of Cocaine Place 

Preference.  

    We determined the effect of α-Conotoxin MII [H9A; L15A] on the acquisition of 

cocaine place preference.  Figure 4.3 illustrates the effect of unilateral intra-

cerebroventricular infusion of α-Conotoxin MII [H9A; L15A] on the acquisition of cocaine 

place preference.  Mice that received saline infusions into the lateral ventricle followed by 

20 mg/kg cocaine (i.p.), displayed significant place preference for cocaine on test day.  On 

the other hand, mice that were infused with α-Conotoxin MII [H9A; L15A] (i.c.v.) had 

significantly attenuated place preference scores on test day (F(4, 35) = 9.619; p < 0.0001).  

Indeed, mice that received infusions of 12 pmol and 24 pmol α-Conotoxin MII [H9A; 

L15A] (i.c.v.) on conditioning days had significantly decreased acquisition of cocaine 

place preference compared to the cocaine group that received only saline infusions.  These 

results propose a critical role of α6β2* nAChRs in the reward like effects of cocaine that 

prompt place preference.  

Since intra-cerebroventricular infusions of α-Conotoxin MII [H9A; L15A] resulted 

in a diffusion of the conotoxin through the ventricles to the entire brain, we examined a 

more specific brain region implicated in drug reward and reinforcement, the Acb, which is 

part of the ventral striatum and which receives a large dopaminergic input from the VTA.  

α-Conotoxin MII [H9A; L15A] was infused into the Acb on cocaine conditioning days, 

and place preference scores were recorded on test day in a drug free state.  Figure 2.4 

shows the effect of intra-accumbal α-conotoxin MII [H9A; L15A] infusions on the 
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acquisition of cocaine place preference.  The cocaine group that received intra-accumbal 

saline infusions had significantly greater place preference compared to the cocaine groups 

that received intra-accumbal infusions of 3pmol or 30pmol α-Conotoxin MII [H9A; L15A] 

(p<0.0001; F=11.08).  However significant cocaine place preference persisted in the 

cocaine groups infused with 3pmol or 30pmol α-Conotoxin MII [H9A; L15A], as indicated 

by having significantly higher scores compared to saline controls.  Therefore there appears 

to be a significant but partial reduction for cocaine preference that is mediated by α6β2* 

nAChRs in Acb, suggesting α6β2* nAChRs in other brain regions, or other substrates are 

contributing to the effect of cocaine on CPP in mice.  Overall these results propose that 

α6β2* nAChRs in Acb are important, but are not the only factors, mediating the 

acquisition of cocaine place preference.   

 Next, the effect of α-Conotoxin MII [H9A; L15A] infusions into the cingulate 

cortex for cocaine place preference was assessed.  The effect of intra-cingulate cortex 

infusions of α-Conotoxin MII [H9A; L15A] is depicted in figure 2.5, where cocaine 

induced place preference persevered.  Mice receiving either saline or 12pmol α-Conotoxin 

MII [H9A; L15A] infusions into the cingulate cortex during conditioning days for cocaine 

displayed significant place preference scores compared to saline control groups (p<0.0001; 

F=32.02).  These results show that the unavoidable lesioning of cortex inflicted by 

insertion of the cannula guide does not affect place preference induced by cocaine.  Based 

on the results showing that intra-accumbal but not intra-cingulate cortex infusion of α-

Conotoxin MII [H9A; L15A] results in a decrease in the acquisition of cocaine place 

preference, we suggest that α6β2* nAChRs in the Acb are critical for cocaine place 
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preference, but are not the sole substrates mediating the reward like effects of cocaine. 



www.manaraa.com

 

70 

Figure 4.3 
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Figure 4.3.  The Effect of Unilateral Intra-Ventricular α-Conotoxin MII [H9A; L15A] 
Infusions on the Acquisition of Cocaine Place Preference. 
 
Unilateral infusions of α-Conotoxin MII [H9A; L15A] into the lateral ventricle resulted in 
a decrease in the acquisition of cocaine place preference.  The saline-cocaine 20 mg/kg 
group had significant place preference scores compared to saline control groups 
(***p<0.001 compared to saline groups) and compared to the 12 pmol MII-cocaine 20 
mg/kg and 24 pmol MII- cocaine 20 mg/kg groups (# p<0.01 compared to saline- cocaine 
20 mg/kg group).  Results are expressed as mean preference scores ±SEMs. 
 

 

n 5-10 

P value <0.0001 

F (4, 35) 9.619 

R squared 0.5538 
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Figure 4.4 
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Figure 4.4 The Effect Bilateral Intra-Accumbal 
Infusions of α-Conotoxin MII [H9A; L15A] on the 
Acquisition of Cocaine Place Preference. 
 
Bilateral intra-accumbal infusions of α-Conotoxin MII [H9A; L15A] resulted in a decrease 
in the acquisition of cocaine place preference. The saline-cocaine 20 mg/kg group had 
significant place preference scores compared to the 3pmol MII-cocaine 20 mg/kg and 
30pmol MII- cocaine 20 mg/kg groups (***p < 0.001 compared to saline groups; **p<0.01 
compared to saline groups; #p < 0.05 compared to saline-cocaine 20 mg/kg group).  
Results are expressed as mean preference scores ±SEMs.  

n 4-10 

P value <0.0001 

F (4, 31) 11.08 

R squared 0.6213 
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Figure 4.5 
  

 

sa
lin

e

12
pmol 

MII

sa
lin

e

12
pmol M

II
0

50

100

150

200

250
saline
cocaine 20 mg/kg

***
***

pr
ef

er
en

ce
 s

co
re

 (
se

co
nd

s)

 

 

Figure 4.5 The Effect of Intra-Cingulate Cortex 
Infusion of α-Conotoxin MII [H9A;L15A] on Cocaine 
Place Preference. 
 
Unilateral intra-cingulate cortex infusions of α-Conotoxin 
MII [H9A; L15A] had no effect on the acquisition of 
cocaine place preference.  Both saline-cocaine 20 mg/kg 
and 12pmol MII- cocaine 20 mg/kg groups demonstrated 
significant place preference scores (***p < 0.001 
compared to saline groups). 

n 4-6 

P value <0.0001 

F (3, 17) 32.02 

R squared 0.9057 
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CHAPTER FIVE 

The Role of α4 Containing nAChRs in Nicotine and Cocaine Conditioned Place 

Preference 

 

5.1 Nicotine Place Preference in α4 KO and α4 WT Mice 

           Previous work has shown that α4* nAChRs are critical for nicotine induced DA 

release (Marubio et al., 2003; Exley et al., 2011; Drenan et al., 2010), and that α4β2* 

nAChR mediate nicotine reinforcement and reward in mice (Tapper et al., 2006; Pons et 

al., 2008; Mcgranahan et al., 2011).  Since there are currently no ligands selective for α4* 

nAChRs, we used transgenic mice to investigate the role of α4* nAChRs in nicotine place 

preference.  Using our CPP procedure, α4 KO and α4 WT male mice were conditioned 

with 0.25, 0.5, or 1 mg/kg nicotine (s.c.) for three days and preference scores were 

assessed on test day.   Figure 5.1 illustrates the capacity of nicotine to induce CPP in α4 

KO mice and their WT littermates.  The dose of 0.5 mg/kg nicotine (s.c) induced 

significant CPP in α4 WT mice, which is the dose that normally produces the most robust 

place preference in our hands (F(7, 45) = 4.328; p = 0.0014).  However, this dose failed to 

produce a CPP response in α4 KO mice.  This was not due to a shift in the curve, as lower 

(0.25 mg/kg) and higher (1mg/kg) doses of nicotine did not induce any place preference in 

α4 KO mice.  This datum supports previous data in the nicotinic field suggesting that α4* 

nAChRs are necessary for nicotine reward.  
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Figure 5.1 
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Figure 5.1.  Nicotine Induced Place Preference in α4 KO and WT Mice  

Robust place preference scores are observed in α4 WT mice for 0.5 mg/kg nicotine 
(s.c.), whereas α4 KO mice failed to show significant preference for nicotine at any of the 
doses tested.  (*p<0.05 compared to saline groups; #p<0.05 compared to α4 WT 0.5 mg/kg 
nicotine; ^p<0.1 compared to α4 WT 0.5 mg/kg nicotine).  Results are expressed as mean 
preference scores ±SEMs.  

n 5-7 

P value 0.0014 

F (7, 45) 4.328 

R squared 0.4570 
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5.2.  Assessing Cocaine Place Preference in α4 KO and α4 WT Mice. 

           As we assessed the role of α6β2* nAChRs in both nicotine and cocaine place 

preference (Chapters 3 and 4), and since previous data suggests a role of β2* nAChRs in 

cocaine reward (Zachariou et al., 2001) which is the subunit that is predominantly co-

expressed with α4, we decided to examine the involvement of α4* nAChRs in cocaine 

reward.  Using our CPP procedure, α4 KO and α4 WT male mice were conditioned with 

various doses of cocaine (i.p.) for three days and preference scores were assessed on test 

day. Figure 5.2 illustrates the capacity of cocaine to induce CPP in α4 KO mice and their 

WT littermates.  We did not see a genotypic effect on cocaine preference across various 

doses of cocaine. Both α4 KO and WT mice displayed similar cocaine place preference 

scores across several doses of cocaine. These results indicate that α4* nAChRs are not 

important for place preference induced by cocaine.  These results complement the 

McGranahan et al. study (2011) which illustrated that of α4* nAChRs on DA neurons are 

involved in nicotine but not cocaine reward.  
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Figure 5.2 
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Figure 5.2.  Cocaine Induced Place Preference in α4 KO and WT Mice. 
 
Place preference was induced by various doses of cocaine in α4 KO and WT mice.  There 
were no genotypic differences in the preference scores for cocaine, suggesting that α4 is 
not necessary for cocaine place preference.  

n 4-6 

P value 0.7930 

F (7, 38) 0.5458 

R squared 0.1097 
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5.3 The Effect of α-Conotoxin MII [H9A; L15A] on Cocaine Place Preference in α4 

KO and α4 WT Mice. 

           We assessed the role of α4* nAChRs in cocaine reward, and found that both α4 KO 

and α4 WT mice have similar place preference for cocaine.  We decided to test the effect 

of α-Conotoxin MII [H9A; L15A] in cocaine CPP in α4 KO and WT mice to confirm the 

role of α6β2* nAChRs in these mice.  Figure 5.3 illustrates the effect if intra-ventricular 

infusion of α-Conotoxin MII [H9A; L15A] on cocaine place preference in α4 KO and WT 

mice.  Both α4 KO and WT mice displayed significant place preference for 20mg/kg 

cocaine when receiving an infusion of saline.  However α-Conotoxin MII [H9A; L15A] 

caused a significant decrease in cocaine place preference in α4 KO and WT mice (F(5, 23) = 

6.506; p = 0.0013).  This datum confirms the role of α6β2* nAChRs in cocaine place 

preference, and also suggests that α6β2* nAChRs are the main receptor subtypes 

mediating the effects of cocaine and do not require the α4 subunit.  
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Figure 5.3 
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Figure 5.3.  The Effect of Unilateral Intra-Cerebroventricular α-Conotoxin MII 
[H9A; L15A] Infusions on Cocaine Place Preference in α4 KO mice.  
 
α-Conotoxin MII [H9A; L15A] infusions into the lateral ventricle resulted in a decrease in 
the acquisition of cocaine place preference in α4 KO and WT mice. Both α4 KO and α4 
WT saline-cocaine 20 mg/kg groups had significant place preference scores compared to 
saline control groups (*p<0.05 compared to saline groups) and compared to both α4 KO 
and WT 12 pmol MII-cocaine 20 mg/kg groups (#p<0.05 compared to α4 WT saline- 
cocaine 20 mg/kg group; $p<0.05 compared to α4 KO saline- cocaine 20 mg/kg group).  
Results are expressed as mean preference scores ±SEMs. 
 

n 4-6 

P value 0.0013 

F (5, 23) 6.506 

R squared 0.6438 
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CHAPTER SIX 

Assessing the Specificity of Hedonics of the Effects of α-Conotoxin MII [H9A; 

L15A] and the α6 Nicotinic Subunit in Place Conditioning. 

 

6.1 Lithium Induced Conditioned Place Avoidance in α6 KO and α6 WT Mice. 

The study of drug reward and reinforcement involves fundamental principles of 

learning and behavior.  This is appropriate given that the development of drug dependence 

can be considered a learned trait, in the sense that internalization of the rewarding of 

effects of drugs and the association made with the environment related to the drug 

following repeated exposure, will result in changes in behavior.  CPP is considered a 

Pavlovian type of learning, where the US is taught to be associated to the CS via the 

appetitive effects of the US and therefore involves memory formation and recollection.  To 

allow a more accurate interpretation of our CPP results, it was necessary to assess the 

specificity of hedonics of α-conotoxin MII [H9A; L15A] and the inactivation of the α6 

nicotinic subunit.  We accomplished this by examining the effect of α-conotoxin MII 

[H9A; L15A] and α6 KO mice on the associative process in place conditioning (memory 

recollection) that is not specific to reward, such as memory specific to aversion.  

Consequently, we examined the effect of lithium induced place avoidance in α6 KO 

and α6 WT mice using the same unbiased place preference protocol used throughout our 

studies for nicotine and cocaine CPP.  Several studies have shown that lithium is aversive 

to rodents (Risinger and Cunningham, 2000; Tenk et al., 2006).   Figure 6.1 illustrates the 

effect of lithium on place conditioning in α6 KO and α6 WT mice.  Both α6 KO and α6 
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WT displayed an avoidance of the context that was associated with 150mg/kg lithium (F(3, 

35) = 3.447; p = 0.028).  Therefore the deletion of α6 subunit did not have an effect on the 

ability of these mice to associate and recall the association of aversive stimuli to the 

context that it was paired with (F(3, 35) = 3.447; p = 0.028).
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Figure 6.1 
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Figure 6.1.  Lithium Induced Conditioned Place 
Avoidance in α6 KO and WT Mice. 
Both α6 KO and WT mice displayed conditioned place 
avoidance induced by 150 mg/kg lithium (i.p.).  (Post hoc 
Newman-Keuls analysis did not find any significance 
between groups).

n 5-14 

P value 0.0280 

F (3, 35) 3.447 

R squared 0.2443 
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6.2.  α-Conotoxin MII [H9A; L15A] and Lithium Induced Conditioned Place 
Avoidance. 
 
           In order to rule out any possible confound of α-conotoxin MII [H9A; L15A] 

affecting the associative process in place conditioning (memory recollection) that is not 

specific to reward, we tested the effect of  α-conotoxin MII [H9A; L15A] on lithium 

induced CPA, illustrated in Figure 6.2.  We found that 50 mg/kg and 150 mg/kg lithium 

(i.p.) resulted in significant place avoidance that was not altered by an i.c.v. injection of 

either saline or α-conotoxin MII [H9A; L15A] (F (7, 38) = 3.957; p = 0.0036).  We used 

6pmol and 12pmol of α-conotoxin MII [H9A; L15A] because these were the doses used in 

several of our nicotine and cocaine CPP expression and acquisition studies.  These results 

suggest that α-conotoxin MII [H9A; L15A] is not attenuating nicotine and cocaine place 

preference by acting on the associative memory process itself, but rather on the associative 

process pertaining to the reward-like effects induced by nicotine or cocaine.     
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Figure 6.2  
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Figure 6.2 The Effect of α-Conotoxin MII [H9A; L15A] on the Expression of Lithium 
Induced Conditioned Place Avoidance. 
 
Unilateral injection of α-Conotoxin MII [H9A; L15A] (i.c.v.) had no effect on lithium 
chloride induced place aversion in B6 mice.  All groups exposed to 50 mg/kg or 150 mg/kg 
lithium (i.p.) displayed significant place aversion compared to saline controls (*p<0.05 
compared to saline groups). 
 
 
 
 
  
 

n 4-6 

P value 0.0036 

F (7, 38) 3.957 

R squared 0.4801 
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6.3 Establishing Food Reward in Mice.  
 
           Since our data are suggesting an effect of α6β2* nAChRs on both nicotine and 

cocaine reward, another important question to address was whether the effect of α-

Conotoxin MII [H9A; L15A] or genetically deleting α6 subunit caused a general decrease 

in reward (anhedonia) including the natural incentives for food and sex.  We chose to 

assess the effect of α-Conotoxin MII [H9A; L15A] or the genetic deletion of the α6 subunit 

on food reward.  In order to accomplish this, we first had to establish a successful protocol 

that resulted in place preference for food.  Along with the minor modifications, including 

food restriction for 4 hours before each conditioning session, 4 conditioning days, and 40 

minute long conditioning (previously described in section 2.3 and 2.4), we had to 

determine which food would allow for place preference to occur.   

          Based on previous literature that reported using palatable foods high in sugar and fat 

(Spiteri et al., 2000; Wise, 2006), we decided to induce food reward using peanut butter 

chips or cheesecake, which are both high in fat and sugar.  Figure 6.3 illustrates place 

preference for palatable foods.  Mice displayed significant place preference for cheesecake, 

with scores significantly greater than those for the basic food pellet that makes up their 

regular diet (F(2,40) = 3.336; p = 0.0463 ).  There was a trend for increased place preference 

with peanut butter chips, but scores were not significantly greater than food pellet scores.  

These results indicate that with minor modifications to our CPP protocol, we can induce 

place preference for cheesecake; therefore cheesecake was used for subsequent 

experiments that assessed the effect of α-Conotoxin MII [H9A; L15A] or the genetic 

deletion of the α6 subunit on natural reward. 
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Figure 6.3 
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Figure 6.3.  Establishing Food Reward in Mice. 

Using a slightly modified CPP protocol, we were able to induce place preference for 
palatable foods in B6 mice.  Cheesecake induced significant place preference scores 
compared to both food pellet (*p<0.05 compared to food pellet). 

n 6-19 

P value 0.0463 

F (2, 40) 3.336 

R squared 0.1494 
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6.4 Food Reward in α6 KO and α6 WT Mice 

           To determine if the genetic deletion of the α6 subunit caused a general decrease in 

reward including natural reward such as food and sex, we assessed food reward induced by 

cheesecake in α6 KO and WT mice illustrated in figure 6.4.  After four days of 

conditioning, both α6 KO and α6 WT displayed similar place preference scores for the 

context associated with cheesecake (F(3,18) = 3.620; p = 0.0381).  These results show that 

the deletion of α6 subunit does not result in general anhedonia or a learning/memory 

deficit, thereby suggesting that the phenotypic effects of nullifying the α6 nicotinic subunit 

is specific to the reward-like effects of nicotine and cocaine, and not specific to food 

reward. 
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Figure 6.4 
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Figure 6.4.  Food Reward in α6 KO Mice 

After four days of conditioning, both α6 KO and α6 WT displayed similar place preference 
scores for the context associated with cheesecake (F(3,18) = 3.620; p = 0.0381).  Student 
Newman-Keuls post hoc test did not result in any significant comparisons.  
 

 

  

  

n 5-7 

P value 0.0381 

F(3,18) 3.620 

R squared 0.4199 
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CHAPTER SEVEN 
 

Discussion 
 

Nicotine is the main psychoactive constituent of tobacco and a major contributor to 

tobacco dependence and addiction. There are many components to drug addiction, one of 

them being reward, which motivates repeated exposure to a drug thereby altering behavior 

and intensifying stimulus drug associations (Di Chiara et al, 1999).  Nicotine acts in the 

brain through nAChRs, and the predominant nAChR subtypes in mammalian brain are 

those containing α4 and β2 subunits. The α4β2 nAChRs regulate many of the addiction-

related actions of nicotine and all current FDA-approved anti-smoking agents target this 

subtype.  These smoking cessation aids have only been modestly effective in maintaining 

abstinence, and have many undesirable side effects.  Identification of relevant nAChR 

subtypes with a more conservative distribution in the brain involved in drug reward is 

essential to finding more effective treatments for smoking and drug addiction.  Our 

research targets nAChRs subtypes that contain α4 and α6 subunits because they often co-

assemble with the β2 subunit which has abundant expression in the central nervous system 

(CNS), and has previously been demonstrated to be crucial for nicotine reinforcement and 

reward (Corrigall et al., 1994; Maskos et al., 2005; Picciotto et al, 1998; Pons et al., 2008; 

Walters et al., 2006) and has also been shown to mediate cocaine reward (Zachariou et al., 

2001).   
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7.1 α6β2* nAChRs are Critical for Nicotine Conditioned Place Preference 

α6β2* nAChRs are complex heteromeric subtypes highly expressed on 

dopaminergic neurons that play major roles in addiction to nicotine.  Indeed, α6β2* 

nAChRs subtypes have high expression in catecholaminergic nuclei in midbrain regions 

thought to mediate drug reward, play an important role in presynaptic dopamine release 

(Grady et al., 2002;Whiteaker et al., 2000) and have been reported to mediate nicotine 

reward and reinforcement in rodents (Pons et al, 2008; Jackson et al., 2009, Brunzell et al., 

2010; Gotti et al., 2010; Drenan et al., 2008).   

  To complement previous studies implicating α6β2* nAChRs in nicotine reward 

and reinforcement, and to determine the role of α6β2* nAChRs using a behavioral test that 

uses drug induced associations to contextual cues, we first examined the ability of nicotine 

to induce place preference in mice null for the α6 subunit.   Using our CPP procedure the 

dose of 0.5 mg/kg nicotine (s.c) induced significant CPP in WT mice, which is the dose 

that normally produces the most robust place preference in our hands.  However, this dose 

failed to produce a CPP response in α6 KO mice, which suggests that removal of the α6 

subunit results in the elimination of the reward-like effects of nicotine that stimulate the 

association to the visual and tactile contexts paired to it, that ultimately result in place 

preference in mice.  This data is supported in the literature by a study showing that α6 KO 

mice fail to self administer nicotine compared to WT littermates, but re-expression of the 

subunit in the VTA in the α6 KO mice reinstated the phenotype to self administer nicotine 

(Pons et al, 2008).   
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When examining place preference for various doses of nicotine in α6 KO mice, we 

observed a significant increase in place preference for 1mg/kg nicotine, which was 

significantly higher than α6 WT littermates.  We did not expect to see this effect, and we 

predicted that it could be mediated by α4β2* nAChRs.  α4β2* nAChRs have high levels of 

expression in the midbrain (Klink et al., 2001), and previous work has illustrated the 

necessity of β2* nAChRs for nicotine reward and reinforcement in rodents (Corrigall et al., 

1994; Picciotto et al., 1998; Maskos et al., 2005; Pons et al., 2008, Walters et al., 2006).   

We found that pre-treatment with DHβE, a selective β2* nAChR antagonist, followed by 

nicotine exposure on conditioning days resulted in significant attenuation of nicotine place 

preference in α6 KO mice, which suggests that place preference for the high dose of 

nicotine in α6 KO mice is mediated by β2* nAChRs.  We can speculate that these findings 

could be attributed in part to the increase in α-conotoxin MII resistant areas in striatum of 

KO mice compared to WT mice, which are most likely representing α4β2* or α4β2(α5)* 

nAChRs, which suggests the possibility of developmental compensation (Champtiaux et 

al., 2002).  This information ties into the common criticism that compensatory effects of 

other genes in transgenic mice may either mask the detection of the targeted gene’s 

phenotype, or be confused for the phenotype of the null gene. 

In addition, we must take into consideration that nAChR subtypes may contribute 

to the same function in the brain; suggesting the concept of receptor redundancy between 

various nAChR subtypes.   Thereby the removal of one nicotinic subtype from the system 

might not be enough to produce a detectable insufficiency in phenotype.  This concept can 

be used to explain why α6 KO, α3 KO, and β4 KO mice do not show any signs of 
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developmental alterations in the visual system where high levels of these receptor subtypes 

are usually expressed (Champtiaux et al., 2002).  In contrast, removing the α3 subunit from 

the autonomic ganglia, where it is expressed in high levels in combination with β4 results 

in autonomic dysfunction rendering these mice unviable (Xu et al., 1999).  This deleterious 

effect is not observed in β4 KO mice, even though nicotine induced currents in ganglion 

cells were 98% diminished, verifying that the β4 subunit was not being replaced by β2 or 

another nicotinic subunit (Xu et al, 1999).  Instead, it appears that the residual β2 in the 

system was sufficient to maintain the changes in the phenotype below the point of 

detection.  

Our KO data suggest that α6β2* nAChRs mediate nicotine place preference.  

However, pharmacological data is also necessary to study a system with an unaltered gene 

pool.  Therefore we assessed the role of α6β2* nicotinic receptors in the expression of 

nicotine induced CPP using the α6β2* nAChR selective antagonist, α-Conotoxin MII 

[H9A; L15A].  We observed a dose dependent decrease in the expression of nicotine place 

preference, suggesting that pharmacological blockade of α6β2* nAChRs results in a 

decrease of nicotine place preference, and therefore a decrease in the reward-like effects of 

nicotine which was not due to shift to the descending part of the inverted U shaped curve 

typical for nicotine CPP.  We found similar results of dose dependent decrease in the 

acquisition of nicotine place preference, where α-Conotoxin MII [H9A; L15A] was given 

i.c.v. on nicotine conditioning days, further supporting the critical role of α6β2*nAChR in 

nicotine place preference.  These findings are in agreement with previous work implicating 
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a role for α6β2* in the rewarding and reinforcing effects of nicotine (Pons et al, 2008; 

Jackson et al., 2009, Brunzell et al., 2010; Gotti et al., 2010; Drenan et al., 2008).   

Although the literature is in agreement that α6β2* mediates nicotine induced DA 

neurotransmission, reward, and reinforcement, there is some divergence when it comes to 

which α6β2* nAChR population in the brain is important for mediating nicotine’s effects.  

Some studies implicate a role for α6β2*in the Acb in nicotine reinforcement and nicotine 

induced DA neurotransmission and release  (Brunzell et al, 2010, Grady 2007 Exley 2008) 

whereas others show that the VTA is primarily involved (Pons et al, 2008, Gotti et al, 

2010).  In the Gotti et al (2010) paper, infusion of α-Conotoxin MII in the Acb did not 

affect the increase in DA levels induced by systemic nicotine, whereas when it was infused 

into the VTA, they observed a significant decrease of nicotine induced DA levels.  They 

did remark that perhaps under their experimental set up, α-Conotoxin MII had limited 

diffusion and may not have reached nAChRs in the Acb that were outside the area that the 

cannula permitted the α-Conotoxin MII to access (Gotti et al, 2010).  Therefore 

α6β2*nAChRs may not have been inhibited, explaining why the α-Conotoxin MII 

infusions appeared ineffective. 

The Pons et al., (2008) study showed that β2, α4, and α6 KO mice failed to self-

administer nicotine as WT counterparts did.  However this phenotype was rescued when 

the missing subunit was re-expressed in the VTA using a lentiviral vector.  Although the 

mice that re-expressed the missing subunit self-administered nicotine, it is not definite that 

this phenotype was due to re-expressing the missing subunit specifically and exclusively in 

the VTA.  It is likely that the lentiviruses traveled down the projections from the VTA to 
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the mesolimbic terminals and re-expressed the missing subunit in those brain regions, 

which could suggest that other regions in addition to the VTA are responsible for the 

rescue of nicotine reinforcement observed in these transgenic mice.  

The Exley at al. (2011) study reported that the majority of nicotine stimulated DA 

release in the Acb was mediated by α6β2* nAChR (Exley et al, 2011).  Furthermore they 

observed that α6 KO mice readily self administered nicotine (ICSA) into the VTA similar 

to WT, and systemic administration of 30ug/kg nicotine resulted in increased firing rate of 

DA neurons in the VTA in both α6 KO and WT mice (Exley at al., 2011).  These results 

propose that α6* nAChRs in the VTA do not seem necessary in mediating nicotine induced 

DA neuron firing or reinforcement, which is not in agreement with findings from Pons et 

al., 2008 or Gotti et al., 2010.  This is where it is important to be aware of the different 

parameters under which the study was conducted, in terms of how nicotine was 

administered (systemic vs. intracranial), the species (rat vs. mouse), and the doses of 

nicotine that were used.  The effects of nicotine were studied in a very site specific manner 

(intra-VTA infusions of nicotine only), and nicotine affects a whole system differently than 

in an isolated system or brain region.  Also, the α6 KO mice self administered nicotine at a 

dose of 100ng, but did not do it as readily for 10ng nicotine.  A dose effect curve would be 

useful to understand the relevance of the nicotine doses used under these experimental 

parameters.   

When we infused 3pmol α-Conotoxin MII [H9A; L15A] into the Acb on nicotine 

conditioning days we observed a significant decrease in nicotine place preference.  Our 

results coincide with several studies including the Brunzell et al. (2010) study which 
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observes that antagonism of α6β2* nAChRs in the Acb shell significantly reduces 

motivation to self administer nicotine, and the Exley et al. (2008) study showing that α6β2 

responses dominate in the Acb, which suggests the importance of α6β2* nAChRs during 

early exposure in the acquisition of nicotine reward and reinforcement.  Overall, our data 

and data from other labs have implicated a critical role for α6β2* nAChRs in the Acb in 

nicotine reward and reinforcement.   

All of our pharmacological studies used α-conotoxin MII [H9A; L15A] to 

investigate the role of α6β2* nAChRs in nicotine (and cocaine) place preference.  The 

development of these α-conotoxins have benefited the nicotinic field tremendously because 

of the selectivity that these peptidic compounds  have at specific nAChR subtypes for 

which there were previously no selective ligands.  One of the unanswered questions about 

these α-conotoxins is their biological stability in a system and half-life in vivo.  There 

could be possible reduction or scrambling of the compound soon after exposure to 

extracellular environments such as blood.  Work is being done to improve the stability of 

these compounds in a biological system, and one way to do this is to find a way protect the 

disulfide bonds against any reduction or scrambling in vivo.  Another limitation, is that 

local levels of α-conotoxin MII [H9A; L15A] may affect its selectivity in the brain, and 

there is always the possibility of unwanted diffusion.  Ultimately, the development of 

antagonists that are selective for α6β2* nAChRs and can be administered systemically will 

help us progress in finding more efficacious treatments for tobacco addiction. Both genetic 

and pharmacological approaches have their limitations, but combining the results of these 

two approaches seems to confirm the role of α6β2* nAChRs in nicotine reward. 
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7.2 α4* nAChRs are Critical for Nicotine Conditioned Place Preference.  

It is well known that the α4 subunit is most often co-expressed with the β2 subunit 

and that α4β2* nAChRs have the highest affinity for nicotine and display the most 

abundant binding to nicotine and nicotinic agonists in the CNS (Changeux, 2005).   α4β2* 

nAChRs are highly expressed in the midbrain (Klink et al., 2001), and previous work has 

illustrated the necessity of β2* nAChRs for nicotine reward and reinforcement in rodents 

(Corrigall et al., 1994; Picciotto et al., 1998; Maskos et al., 2005; Pons et al., 2008, Walters 

et al., 2006).  

Using our CPP procedure the dose of 0.5 mg/kg nicotine (s.c) induced significant 

CPP in α4 WT mice, which is the dose that normally produces the most robust place 

preference in our hands.  However, this dose failed to produce a CPP response in α4 KO 

mice.  This datum supports previous data in the nicotinic field suggesting that α4* nAChRs 

are necessary for nicotine reward, reinforcement, and striatal DA release (Pons et al., 2008; 

Exley et al., 2011, Marubio et al., 2003, Tapper et al., 2004).  

 In contrast to the above-mentioned studies and contrary to our results, a recent 

report found that mice null for the α4 nicotinic subunit showed similar place preference 

scores to WT littermates for 0.5 mg/kg nicotine (i.p.) (Cahir et al., 2011).  Their CPP study 

used a different route of administration (i.p. vs. s.c.), used a biased design where initial 

baseline preference scores were not included when calculating final preference scores on 

test day, and they did not include a saline control.  This was the same group generated 
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mice null for the α4 nicotinic subunit in 2000 in Australia (Ross et al, 2000) and reported 

observations of higher levels of basal anxiety in α4 KO mice compared to WT littermates 

in the elevated plus maze test.  This is also where our α4 KO mice originate (although they 

have been backcrossed for 10 generations onto B6 background in the United States) so it 

was important for us to determine if the α4 KO mice we used for CPP that showed a 

decrease for nicotine place preference, did have higher levels of basal anxiety, which 

would perhaps be a confound in our study.  We tested naïve α4 KO and WT mice in 

elevated plus maze, and found no differences in the basal anxiety levels and locomotor 

activity of these mice.  This can be explained by the fact that these α4 KO mice have been 

backcrossed to B6 mice for several generations since the observation of basal anxiety in 

the α4 KO mice that were first generated.  Therefore the anxiety could stem from the 

background Balb/c strain that was used to create these mice; the Balb/c strain has been 

shown to have higher anxiety compared to B6 (Michalikova et al.,  2010).  This is further 

supported by the generation of other α4 KO mice that used 129 background strain crossed 

with B6 (Marubio et al., 1999), and another line of α4 KO mice that used B6 as their 

background strain crossed with B6 (McGranahan et al., 2011) which did not show changes 

in basal anxiety levels. 

 Recently, several studies have implicated both α4 and α6 in nicotine’s effects on 

dopaminergic circuitry.  α4α6β2β3* nAChRs display the greatest sensitivity to nicotine 

(EC50 = 230 nM), with high affinity for nicotine and ACh binding (Salminen et al., 2007). 

Enhanced nicotine induced DA release in the α6 KI mice, was reduced when the α4 

subunit was removed from their system, indicating that α4α6β2* nAChRs are key players 
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in the cholinergic control of DA neurotransmission.  Another study that coincides with 

those results showed that at terminals in the Acb, both the α4 and the α6 subunits were 

necessary to maintain nicotine-sensitive cholinergic regulation of DA release (Exley et al,, 

2011). We found that removal of the α4 subunit or α6 subunit, or antagonism of α6β2* 

resulted in a decrease in place preference for doses of nicotine that produce robust place 

preference in normal WT mice; our data proposes a critical role for α4β2*, α6β2* 

nAChRs, and while our data do not directly verify this, they also suggest that α4α6β2* 

nAChRs are critical for nicotine place preference. 

 As the field progresses in understanding the contribution of the various nicotinic 

receptors to the effects of nicotine in the CNS, several ideas have been discussed. 

Mansvelder et al., (2002) Exley et al., (2008) among many others have shown that nicotine 

disrupts basal ACh activity at DA neurons.  Mansvelder and McGehee (2000) have 

reported that nicotine desensitizes α4β2*nAChRs involved in GABAergic transmission 

thereby causing disinhibition of DA neurons, while activating α7* nAChR involved in 

glutamatergic transmission thereby facilitating excitation of DA neurons which increases 

DA neuron activity and DA release in the mesolimbic system resulting in the reward-like 

effects of nicotine.  In the mesostriatal and mesolimbic DA system, α4β2* nAChRs are 

expressed in cell bodies and axon terminals of midbrain and striatal DA and GABA 

neurons.  Although there have been recent reports that  α6β2* nAChRs may be located on 

GABAergic terminals in the VTA (Yang et al., 2011), it is well established that they are 

predominantly expressed on DA neurons in the mesolimbic system, and are involved in 

nicotine reward, reinforcement, and DA neurotransmission.  The current compilation of 
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studies along with our results pertaining to α6β2* and α4β2* nAChRs have added to our 

understanding of the contribution of the various nicotinic receptors in nicotine reward and 

reinforcement.    

7.3 α6* nAChRs, but not α4* nAChRs, are Critical for Cocaine Conditioned Place 

Preference. 

 Several studies have shown that nicotinic agonists and antagonists modulate 

cocaine reward, reinforcement, and sensitization (Champtiaux et al., 2006; Horger et al., 

1992; Levine et al., 2011; Reid et al., 1998; Reid et al., 1999; Zachariou et al., 2001; 

Zanetti et al., 2007). Our research targeted α6* and α4* nAChRs subtypes in the 

investigation of nicotinic receptor modulation of cocaine reward because they are often co-

expressed with the β2 subunit, and β2* nAChRs are known to be crucial for nicotine 

reinforcement and reward (Maskos et al., 2005; Picciotto et al., 1998; Walters et al., 2006) 

and have also been shown to modulate cocaine reward (Zachariou et al., 2001).   

Using our CPP procedure, we saw a genotype dependent effect where cocaine 

preference was reduced in α6 HET mice (which express half the amount of α6β2* 

nAChRs), and totally eliminated in α6  KO mice compared to α6 WT counterparts.  To 

complement this data, we also observed a dose dependent decrease in the expression of 

cocaine place preference with i.c.v. injections of α-Conotoxin MII [H9A; L15A], and a 

decrease in the acquisition of cocaine place preference as well.  When we targeted the Acb, 

we observed a significant but partial reduction for cocaine preference that was mediated by 

α6β2* nAChRs in Acb, which suggests that  α6β2* nAChRs in other brain regions are 

contributing to the effect of cocaine on CPP, or there is the possibility that there are other 
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substrates involved.  Overall these results propose that α6β2* nAChRs in Acb are 

important, but are not the only brain regions/substrates mediating the acquisition of 

cocaine place preference.  Our results expand on the study implicating a role for β2 in 

cocaine place preference (Zachariou et al., 2001), by suggesting that α6 is the subunit co-

expressing in the nicotinic subtype mediating the reward like effects of cocaine.  Our 

results implicating α6β2* nAChRs in Acb in cocaine reward can be explained by the 

mechanisms underlying the reports of psychostimulants enhancing the release of ACh in 

the Acb and increasing responsiveness of cholinergic neurons during acute and repeated 

drug exposure (Nestby et al., 1997). 

α4β2* nAChRs are also highly expressed in the midbrain (Klink et al., 2001), and 

previous work has illustrated the sufficiency of α4* nAChRs (Tapper et al., 2004) and the 

necessity of α4β2* nAChRs for nicotine reward and reinforcement (McGranahan et al., 

2011; Pons et al., 2009)  and nicotine induced DA release in rodents (Drenan et al. 2010; 

Marubio et al. 2003).  McGranahan et al. (2011) reported that while α4* nAChRs 

specifically on dopaminergic neurons were necessary for nicotine place preference, they 

were not for required for cocaine place preference.  Along the same line, we found that 

both α4 KO and WT mice displayed similar cocaine place preference scores across several 

doses of cocaine, suggesting that α4* nAChRs are not required for cocaine reward in the 

place preference test.   

We confirmed the role of α6β2* nAChRs in cocaine place preference by exposing 

α4 KO mice to the α6β2* nAChRs selective antagonist and then testing them for the 

acquisition of cocaine place preference.  We found that α-Conotoxin MII [H9A; L15A] 
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caused a significant decrease in cocaine place preference in α4 KO and WT mice, which 

confirms the role of α6β2* nAChRs in cocaine place preference, and also suggests that 

α6β2* nAChRs are the main receptor subtypes mediating the effects of cocaine and do not 

require the α4 subunit.  

           Progress has reported that a nicotinic component is involved in the rewarding and 

reinforcing effects of cocaine (Champtiaux et al., 2006; Horger et al. 1992; Levine et al., 

2011; Reid et al. 1998; Reid et al., 1999; Zachariou et al., 2001; Zanetti et al.,2007; Levin 

et al. 2000; Blokhina et al. 2005; Fiserová et al., 1999; Nestby et al., 1997)).  Indeed the 

Pedunculopontine tegmentum (PPTg) and laterodorsal tegmentum (LDTg) fibers supply 

heavy cholinergic input to the mesolimbic system that is robustly involved in excitation of 

DA neurons (Lanca et al.,2000).  α7*nAChRs in midbrain located on glutamatergic 

terminals projecting from cerebral cortex,  α4β2* nAChRs located on GABAergic 

terminals and DA cell bodies in midbrain, and α4* and α6* nAChRs on dopaminergic 

terminals in midbrain neurons are all capable of responding to PPTg/LDTg derived ACh 

(Calabresi et al., 1989).  In the mesolimbic system, α4β2* nAChRs are expressed in cell 

bodies and axon terminals of midbrain and striatal DA and GABA neurons. In contrast, 

α6β2* nAChR expression is predominantly restricted to DA cell bodies and axon 

terminals, and are therefore more exclusively involved in mediating DA neurotransmission 

when targeted in the whole system.  Given this information, we can speculate that a 

possible mechanism explaining our cocaine results would be that interfering with the 

cocaine induced PPTg/LDTg excitation and cholinergic activitation of α6β2* nAChRs on 

DA neurons in the mesolimbic system by inhibiting or removing the α6 subunit ultimately 
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results in the disruption of an important neuromechanism involved in the attainment of the 

reward like euphoric effect of cocaine.   

 

7.4 Lithium Conditioned Place Avoidance and Food Reward are not altered by 

pharmacological or genetic manipulations of α6* nAChRs. 

The study of drug reward and reinforcement involves fundamental principles of 

learning and behavior.  CPP is considered a Pavlovian type of learning, where the US is 

trained to be associated to the CS via the appetitive effects of the US.  The association of 

US with CS involves memory formation and memory recollection.  It was necessary to 

assess the specificity of hedonics of α-conotoxin MII [H9A; L15A] and the inactivation of 

the α6 nicotinic subunit.    

We tested the effect of  α-conotoxin MII [H9A; L15A] on lithium induced CPA, 

and found that lithium induced a conditioned place avoidance that was not altered by 

exposure to α-conotoxin MII [H9A; L15A].  Furthermore, lithium induced a significant 

CPA in α6 KO mice.  Overall, our results show that α-conotoxin MII [H9A; L15A] 

decreased nicotine and cocaine place preference without having an effect on overall 

memory or causing confusion in the mouse as indicated by the ability of the mice to 

associate the context paired with the aversive properties of lithium and recall this memory 

on test day of CPP.   

We also addressed the involvement of the α6 subunit in natural reward, specifically 

examining place preference for cheesecake.  We found that cheesecake was able to induce 

similar place preference profiles in α6 KO mice and WT littermates, suggesting that 
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inactivation of the α6 subunit does not result in a general decrease in reward (anhedonia) 

specifically pertaining to the natural incentive for food.  Previous work has shown that the 

α-conotoxin MII compound had no effect on rats responding to a cue-only stimulus 

(Brunzell et al., 2010), or on the rate that rats were self-administering food in the Gotti et 

al. (2010) study.  It is important to note however, that the rats in the Gotti et al. study were 

severely food restricted, and this may have heavily influenced the outcome of their 

assessments.  Since α-conotoxin MII [H9A;L15A] is an analogue of α-conotoxin MII, this 

helps to support our results showing the lack of involvement of α-conotoxin MII 

[H9A;L15A] on food or other non- psychoactive drug stimuli.   

7.5 Future Directions.  

 Our data suggests a critical role for 6* and 4* nAChR in nicotine 

reward, but only 6* were found to be required for cocaine conditioned place 

preference.  To expand on these studies, it would be beneficial to investigate the α6β2* 

nAChR component in cocaine induced striatal DA release, which would further support the 

involvement of α6β2* nAChRs in cocaine reward.  Also, investigating the role of α6β2* 

nAChRs in other behavioral models of reward, such as intracranial self-stimulation or self 

administration, would be useful to confirm our CPP results.  It would also be interesting to 

determine the role of α6β2* nAChRs in cocaine locomotor sensitization, which underlies 

synaptic plasticity and long term potentiation of synapses that modify neural circuitry 

affected by cocaine.  As other measures of assessing the specificity of hedonics for our 

CPP results, it would be of interest to assess α-conotoxin MII [H9A;L15A] and α6 and α4 
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KO mice in fear conditioning which also uses contextual cues and learning similar to the 

contextual learning used for CPP.   

α6β2* nAChRs very often co-assemble with the β3 subunit.  Determining its 

relevance in nicotine and cocaine CPP would further characterize the subunits that make 

up the discrete nicotinic receptor subtype that mediate nicotine and cocaine reward.  The 

β3 subunit is encoded by a gene adjacent to the gene for α6, and its expression is pertinent 

to functional α6* nAChRs (Cui et al, 2003).  Also, populations of β3 nAChRs have been 

identified as sensitive to αConotoxin MII and have been shown to modulate striatal DA 

release (Cui et al, 2003).  In the absence of specific antagonists/agonists for the native β3* 

subtypes, β3 KO mice should be used.  CPP experiments with β3 KO  mice should be 

conducted across a range of nicotine doses (0.1-2.0 mg/kg).   

 

7.6 Concluding Remarks.  

 Tobacco smoking is a prevalent addiction that constitutes the leading cause of 

preventable death and disease. Cigarettes produce CNS effects in a matter of seconds when 

smoked.  Each puff of cigarette provides reinforcement, and for heavy smokers, this habit 

is reinforced hundreds of times daily.  Environmental cues, social settings, and the 

anticipation and physical act of smoking all become repeatedly associated with the 

rewarding effects of nicotine which contribute to the resilience of nicotine dependence 

illustrated by the high relapse rates in smokers who try to quit.  Several studies have 

investigated the relevance of environmental cues to smoking phenotypes and highlight the 

impact that they have on smoking addiction and the tendency of addicts to relapse.  
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Current nicotine cessation therapies only produce up to a 30% successful abstinence rate, 

and are beset with adverse systemic and some neuropsychiatric side effects.  The low 

efficacy and adverse side effects can be partly explained by the lack of selectively targeting 

relevant nicotinic receptors that are involved in smoking addiction.  Most current therapies 

are not targeted towards one specific nAChR subtype, and many will act at α4β2* nAChRs 

which have a ubiquitous expression profile in the CNS.  Our goal was to target α6 and α4 

subunits in our research because they are often co-expressed with the β2 subunit which has 

been established as a critical subunit in nicotine reward and reinforcement.  The relevance 

of contextual cues in addiction have been confirmed by several human and animal studies, 

which is why we chose to conduct our assessments of these receptor subtypes in nicotine 

and cocaine reward using conditioned place preference which involves the association of 

visual and tactile cues to the drug.   Our results coincide with other studies that implicate a 

critical role for α6β2* and α4β2* nAChRs in nicotine reward and reinforcement.  Given 

the neuroanatomical distribution of α6β2* nAChRs on catecholaminergic neurons and the 

behavioral assessments involving this receptor subtype, these studies are suggesting that 

inhibition of α6β2* may be a valuable approach for smoking cessation treatments.  Our 

studies also provide the first evidence for an important role of these subtypes in behavioral 

effects of cocaine.    

      The role of α6β2* nAChRs extends beyond addiction to neurological diseases 

including Parkinson’s disease.  α6β2* nAChRs are expressed not only in the mesolimbic 

system, but also found in the nigrostriatal dopaminergic system which is primarily 

involved in movement; the loss of dopamine neurons in this pathway is one of the main 
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features of Parkinson’s disease.  Studies have shown that there is a decreased occurrence of 

Parkinson’s disease with smoking (Gorell et al., 2004; Ritz et al., 2007, Thacker et al, 

2007). One study found that nicotine pretreatment resulted in protection against 

nigrostriatal damage in rats and monkeys, which my be linked to α4α6β2* nAChRs 

(Huang et al, 2009)  Data suggest that drugs targeting α6* nAChRs may be beneficial for 

the treatment of smoking addiction, Parkinson’s disease, and other disorders with 

movement and locomotor deficits.   

  To conclude, It is important to remember that nicotine dependence is due to complex 

behavioral traits that are influenced by genetics and environment.  Nicotine and other drugs 

are not consumed for the sole purpose of pleasure and euphoria, but can be used for milder 

forms of gratification including stress relief, anxiety relief, improved cognition, mood, and 

performance, reduction of fatigue, decreased appetite, and for social purposes among many 

others. In fact, smokers report that they smoke for many of these reasons (Brandon, 1999).  

Therefore as the field progresses, the ideal combination of psycho and pharmacotherapies 

would be those that are geared towards the individual’s genetic background and the 

lifestyle they lead which governs when, why, and how often they smoke.  Hopefully new 

and improved nicotine cessation therapies that target α6* nAChRs will be developed in the 

future to bring about improved abstinence rates in people struggling with addiction but 

striving to be tobacco free.   
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